
A zero-one law for dynamical properties

Eli Glasner & Jonathan L. King

Tel Aviv University, Tel Aviv, Israel glasner@math.tau.ac.il

University of Florida, Gainesville 32611-2082, USA squash@math.ufl.edu

Abstract. For any countable group Γ satisfying the “weak Rohlin property”, and for each dynamical
property, the set of Γ-actions with that property is either residual or meager. The class of groups with

the weak Rohlin property includes each lattice Z×d; indeed, all countable discrete amenable groups.

For Γ an arbitrary countable group, let A be the set of Γ-actions on the unit circle Y . We establish
an Equivalence theorem by showing that a dynamical property is Baire/meager/residual in A if and

only if it is Baire/meager/residual in the set of shift-invariant measures on the product space Y ×Γ.

§1 Introduction

Halmos’s book Ergodic Theory introduced many of us to the study of determining which dynamical
properties are generic (i.e, topologically residual) in the so-called “coarse topology” on transfor-
mations. For instance, “weak-mixing” is generic, whereas “mixing” is not, [Hal, pp. 77,78]. The
exploration of this notion of genericity became an active research area; see [CP] and [CN] for results
and extensive bibliographies.

It has often been the case, when a property has failed to be generic, that further investigation
has shown its negation to be generic. This suggests that there is a type of “zero-one” law operating
for dynamical properties –each is either meager or residual ; that is, either a first-category set (a
countable union of nowhere-dense sets) or the complement of such.

In 1993, we found a demonstration of this for certain acting groups Γ, for dynamical properties
which are Baire-measurable. We first present the brief proof in the abstract framework of a group Φ
acting as homeomorphisms of a topological space A, where A fulfills the Baire Category Theorem
in that each residual set is dense. We call such a space a BaireCat space, and say that a subset
of a topological space is BaireCat if it is a BaireCat space in its induced topology.†
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We then show how this abstract framework applies when A is the space of measure-preserving
Γ-actions with Φ playing the role of its group of isomorphisms. In this instance, A will be a Polish

space, that is, homeomorphic to a complete separable metric space.

Miscellany. In this article, a “field” is a sigma-algebra and “measure” means a probability
measure on the Borel-field of a topological space. All sets and mappings are Borel-measurable
unless specified otherwise. Given a measure µ, we call µ(A) the µ-mass of A. Let mp abbreviate
“measure preserving”.

For a set, measure or transformation A, let A×3 denote the cartesian power A × A × A. For a
set G, let A×G means the cartesian power

⊗
γ∈GAγ , where each Aγ = A.

What is a Dynamical Property? Leaving the definition of coarse topology until later, consider
the case of a measure-preserving transformation (mpt) T of a probability space Y = (Y,Y , µ).
Those transformations isomorphic to T are of the form ϕTϕ−1, where ϕ is a member of the group, Φ,
of bi-mpts. [We write “ϕ(T )” for ϕ Tϕ−1, to notationally emphasize that Φ acts on the set of
transformations.] Consequently, a dynamical property, such as the set of mixing transformations,
is necessarily a union of isomorphism classes, that is, a union of Φ-orbits.

But Φ-invariance is not enough. For an invariant set, B, of transformations to be considered
a “dynamical property”, it is reasonable to require that it satisfy some kind of measurability
condition. We can prove the Zero-One Law when B is Borel-measurable or even (co-)analytic,
because our proof applies when B is a Baire set –that is, when B can be written as the symmetric-
difference V △M of an open set with a meager set M . Call V △M a “picture” of B; a Baire set
may have many pictures. The Baire sets♮ form a field which includes the Borel sets—indeed, even
the analytic sets; see [Kur, pp. 482, 92]. As evidence that dynamical properties might transcend
the Borel-field, the Prime Example, below, considers the set of actions without factors.

Before showing its application to transformation-groups, we now state and prove the result
in an abstract setting. The abstract lemma, we later found out, appears as “folklore” (private
communication) in [Kec, 1995], theorem 8.46. The earliest reference to the result that we have
found is in [Oxt2, 1937], where it is stated in the case that Φ is the group of integers.

Zero-one Lemma. Suppose Φ is a group of homeomorphisms of a BaireCat space A. If there
is some member T ∈ A whose Φ-orbit is dense‡ in A, then: Each Baire-measurable Φ-invariant
set B is either meager or residual.

The Baire necessities. (Proofs of the following facts can be found in [Oxt, Chap. 4].) A subset
of a topological space is regular-open if it equals the interior of its closure. The fact we need
from elementary topology is that a Baire set B has a “regular-picture” B = U △M , where U is
regular-open and M is meager.

♮We use the term ‘Baire set’ in place of the more conventional, but ponderous, phrase “a set with the Property
of Baire”. Our usage differs from the way ‘Baire set’ is used in topological measure theory.

The Baire-field is likely to include most dynamical properties of interest to Ergodic theorists, as the following two
models, due to Solovay 1970, show. There is a model of ZFC, set theory with Choice, in which all the “projective

sets” (any finite number of projections and complements of Borel sets) are Baire-measurable. Indeed, if our Ergodic

theorist is willing to forego Choice, there is a model of ZF in which all subsets of Polish spaces are Baire sets.
‡Density implies (and –when A is Polish– is equivalent to) topological transitivity of the action of Φ on A. This

latter is all that the proof requires; however, in applications one usually establishes a dense orbit.
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The following four properties of a topological space A are easily equivalent: (a) Each Baire
set B ⊂ A has at most one (hence exactly one) regular-picture B = U △M . (b/c) The only
open/regular-open meager set is empty. (d) A is BaireCat. (By the way, the Baire Category Theo-
rem is not reversible, in that there are BaireCat spaces which are neither locally-compactHausdorff,
nor complete-metric; [FK, 1978].)

Proof of Zero-One Law. Applying a homeomorphism ϕ ∈ Φ to the regular-picture yields

B = ϕ(B) = ϕ(U) △ ϕ(M) .

Since ϕ is a homeomorphism, ϕ(U) is regular-open and ϕ(M) is meager. Then uniqueness of the
regular-picture implies that both U and M are Φ-invariant.

If U is void, then B = M and is consequently meager. Otherwise, U intersects the hypothesized
dense-orbit and so, by Φ-invariance, U is dense. Thus U is residual and consequently so is B. �

Application to Group Actions

In classical Ergodic Theory, the role of “time” was usually played by Z. Later, actions of more
general topological groups Γ (usually amenable) were studied. In this article, we will restrict
ourselves to countable discrete groups Γ, although both the definitions and the results apply more
generally. Although Γ may be non-abelian, we write Γ additively, with identity 0 ∈ Γ. As names
for “times”, we use α, β, γ ∈ Γ.

On our probability space Y, an action of Γ is a collection T = {T γ | γ ∈ Γ} of µ-mpts so that
T β+α = T β ◦ Tα and the mapping (γ, y) 7→ T γ(y) is a measurable map

(
Γ × Y, Borel × Y

)
−→

(
Y,Y

)
.

We call T γ “the transformation at time γ”.
Each bi-mp map ϕ : (Y, µ)→ (Y ′, µ′) defines a conjugate action R := ϕTϕ−1 on (Y ′, µ′) by

Rγ := ϕT γϕ−1. Two actions (T : Y, µ) and (R : Y ′, µ′) are isomorphic if they are conjugate. If
the measure spaces are understood, we write T ∼= R.

The coarse or weak-operator topology. On the set of measure-preserving transformations
of Y, the coarse topology is defined by net-convergence,

Ti ֌
i
R iff µ

(
T−1

i (E) △R−1(E)
)

֌
i

0, for all measurable subsets E ⊂ Y .

A countable algebra (Ek)∞k=1 of sets, which separates points of Y , gives rise to a metric which
induces the coarse topology:

dist(T,R) :=
∑∞

k=1

1

2k
µ
(
T−1(Ek) △R−1(Ek)

)
. (1a)

With this metric, the set of mpts becomes a Polish space.
On Y, let A = AΓ denote the set of Γ-actions. It also has a coarse topology from net-

convergence: Ti ֌
i

R iff [∀γ : T γ
i ֌

i
Rγ ]. When Γ is countable, the coarse topology makes the

action space A a Polish space, via the metric

d
(
T,R

)
:=

∑∞

j=1

1

2j
dist(T γj , Rγj) , (1b)

where (γj)
∞
j=1 is a fixed enumeration of Γ.
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Weak Rohlin Property. Zero-One applies to Γ whenever Φ acts topologically transitively on AΓ.
In the case Γ = Z, the Rohlin Lemma implies this, since any two aperiodic transformations, T and
R, have arbitrarily large congruent Rohlin stacks. Thus some isomorphic copy ϕ(T ) is close to R,
and so the set of copies, Φ(T ), is dense among the aperiodics. The argument is finished by showing
the aperiodics to be dense in AZ.

With this as motivation, say that Γ has the weak Rohlin Property (WRP) if Φ(T) is dense
in AΓ, for some Γ-action T. The analog of aperiodicity is “free-ness”; an action T is free if, after
deleting a Y -nullset: For each point y, the map γ 7→ T γ(y) is injective. The Appendix has a
brief argument for the following:

When Γ is countable, the set of free Γ-actions is dense –indeed, residual– in AΓ. (2)

Since there is a Rohlin lemma for Γ = Z×d (first shown in [KW] and later in [Con, thm 3.1]), the
integer lattice has the WRP. More generally, the seminal paper by Ornstein & Weiss, [OW, p. 59],
proves a multiple-tower Rohlin lemma. Weiss and Rudolph have indicated to us that this can be
used to establish the WRP for all countable discrete amenable groups, thereby establishing that
the Zero-One Law applies to these groups Γ.

Question. How large is the class of WRP groups; in particular, does it include the free group
on two generators?

Prime Example, 3. A Γ-action (T : Y,Y , µ) is prime if it has no proper non-trivial factors. Is
primeness generic? Even when Γ = Z, this question is open, [dJR, P. 556]. What we do know,
for weak-Rohlin groups Γ, is that Zero-One is applicable, since –as shown next– primeness is
co-analytic.

Let M be the “measure-algebra” of Y (i.e, Borel sets equal a.e are identified) but without the
null and co-null sets. Since M is Polish, M×M is Polish. Thus, to show that the set of non-prime
actions, N ⊂ AΓ, is analytic, we find a Borel condition (i.e, subset) B in M×M×A so that: The
projection of B on the A-component, equals N.

And N is a projection, since it comprises those T for which: ∃I,D ∈ M such that “D is not
in the T,P-factor”, where here –and henceforth– P abbreviates the two-set partition (I, Y rI).
Restating the quoted condition,

∃ε : ∀T,P-cylinder-sets C: µ(C △D) ≥ ε . (∗)

So B is the set of triples (I,D,T) fulfilling (∗). It remains to show that B is Borel in M×M×A.

Cylinders. Each finite subset F ⊂ Γ and tuple ~v = (v1, . . . , vL) of maps F→{0, 1} specifies a

“T,P-cylinder set”. It is C~v[I,T] :=
⋃L

ℓ=1 Cvℓ
, where I0 := I and I1 := Y r I, and Cv abbreviates⋂

γ∈F T
−γ(Iv(γ)). Observe that the mass on the lefthand side of

µ
(
C~v[I,T] △ D

)
≥ ε (∗∗)

varies continuously as a function of I and T and D. So the set of (∗∗)-triples (I,D,T), is closed.
Consequently, first intersecting over F and ~v, then unioning over countably many ε ց 0, shows
that B is an Fσ-set. �

Question. Is primeness Borel measurable? We do not know. Allowing Γ to range over continuous
as well as discrete groups, the answer in principle could depend on Γ. For the related property of
simplicity , [dJR], both its Borel and meager/residual status (the 0-1 law applies) are unknown.
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§2 Dynamically generically-equivalent settings

Two of the classical settings for studing Γ-actions were: The action space, A, where the measure
was fixed and the transformation varied, and The set of shift-invariant measures, where the
transformation was fixed, and the measure varied. Our goal, the Equivalence Theorem♯ below,
is to show that these two settings give identical genericity results for Baire-measurable properties.

To discuss this generally, a setting is a topological space Ω and mapping ω 7→ (Rω : Xω, µω)
from Ω to Γ-actions. A subset B ⊂ Ω is saturated if Rω

∼= Rη implies that both ω and η, or
neither, are in B. In principle, a saturated property might be Baire-measurable in one setting and
not in another. Say that settings Ω and Ω′ are dynamically generically-equivalent if saturated
properties are Baire/meager/residual in Ω iff they are Baire/meager/residual in Ω′.

Notes: Here is an example of a setting Ω where the Zero-One Law does not hold. In particular,
it is a setting which is not dynamically generically-equivalent to A.

Let Ω be the set of mpts on (Y,Y , µ), but equipped with the “Halmos metric”, rather than
the (1a) metric. In the Halmos metric, dist(T,R) is the Y -mass of the set of points y for which
T (y) 6= R(y). This metric makes Ω complete, but not separable.

Evidently, the open ball of radius 1/2, centered at Id, is an isomorphism invariant open set,
which is not residual. �

End of Notes.

The space of Shift-Invariant Measures

We now specialize our measure space to be Y = (Y,Y ,m), where Y := [0, 1) is topologized to be
the unit circle, and m is Lebesgue measure (restricted to Y , the Borel-field of the circle).

For our new setting, •SIM, we need the definitions which follow. A superscript “•” on a set of
measures is meant to suggest that these measures might have atoms.

•M is the set of (Borel probability) measures on Y .
M comprises those non-atomic µ ∈ •M which have “full-support”, that is, each non-void open

set V ⊂ Y has positive µ-mass. We’ll call these the good measures.

Ŷ denotes the product space Y×Γ, which is the infinite torus equipped with the product

topology. Use ŷ, ẑ ∈ Ŷ . Let ŷ[γ] denote the γth-coordinate of ŷ.

S is the shift on Ŷ . It is the Γ-action {Sα | α ∈ Γ} defined by

Sα(ŷ) := ẑ , where ẑ[γ] := ŷ[γ + α] .

Note that Sβ ◦ Sα = Sβ+α.
•SIM is the set of shift-invariant measures on Ŷ , that is, invariant under each Sα, for α ∈ Γ.

We’ll call such a measure a sim . For a sim µ̂, let Marg[µ̂] be the measure in •M which
is the (1-dimensional) marginal of µ̂; this marginal is independent of which copy of Y we
condition on, since µ̂ is shift-invariant.

SIM is the set of good sims , that is, those µ̂ ∈ •SIM such that Marg[µ̂] is in M.

♯In the case that Γ = Z, essentially this same result was independently obtained by Dan Rudolph in his work

[Rud] on orbit-equivalence.
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SIMν comprises those good sims whose marginal is ν, where ν is a good measure. Thus SIM is
the disjoint union, over all ν ∈ M, of “fibers” SIMν .

Weak-∗ preliminaries. Both •M and •SIM become compact metric spaces under the weak-∗
topology: µi → ν iff

[∫
t dµi −→

∫
t dν

]
, for all continuous real-valued “test” functions t. For

U open, the indicator 1U can be arbitrarily well approximated by functions t ≤ 1U . Consequently,
whenever µi → ν,

ν(B) ≥ limsup
i

µi(B) ≥ liminf
i

µi(B
◦) ≥ ν(B◦) (4)

for all sets B. In particular: µ 7→ µ(B) is continuous on the collection of measures for which the
boundary, ∂B, is a nullset.

A partition P divides Y (disjointly) into finitely many pieces; each piece I ∈ P is an interval

of positive length. Fix a finite set F ⊂ Γ of times. An “F,P-cylinder set”, C ⊂ Ŷ , is of the form⊗
γ∈F Iγ , where each Iγ is in P. This cylinder C comprises those ŷ such that

[
∀γ ∈ F : ŷ[γ] ∈ Iγ

]
.

Observe that ∂C is a nullset, for good sims µ̂, since Marg[µ̂] is non-atomic. Thus

On SIM: µ̂i → ν̂ ⇐⇒ ∀cylinders C: µ̂i(C) → ν̂(C) (5)

Implication (⇐) holds since, if sim ν̂ differs from η̂, then ν̂(C) 6= η̂(C) for some Gδ-set C, hence
for some open C, hence for some cylinder.

Finally, we leave to the Appendix a proof that

SIM is a residual subset of •
SIM. (6)

Courtesy of this, henceforth all measures and sims discussed are good . Certainly m is good. We
use names µ, ν ∈ •M for other good measures, and use µ̂, ν̂, η̂ to name good sims.

Equivalence Theorem, 7. Settings A and •SIM are dynamically generically-equivalent.

Overview of the proof. Produce a BaireCat space H and an embedding E, which is a homeo-
morphism from H × A into SIM, so that

(8a) For each h ∈ H and T ∈ A: E(h,T) is isomorphic to T.
(8b) The set, Range(E), is residual in SIM.

The map E makes H × A into a setting. That A and H × A are dynamically generically-
equivalent follows from (8a) and the plausible fact, [Oxt, P. 57] theorems 15.2 and 15.3, that
for arbitrary topological spaces with H a BaireCat space and A countably-generated,

A subset C ⊂ A is Baire/meager/residual in A iff
the product H×C is Baire/meager/residual in H×A.

Lastly, (8b) and (6) allow Proposition9, below, to show that Range(E) and SIM and •
SIM

are dynamically generically-equivalent.

Relative Baire necessities. Given subsets B and G of a topological space Ω, say that “B is
G-open” (closed, nowhere-dense, meager, residual, Baire) iff B ∩G is open (closed, etc.) relative
to the induced topology on G.
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Proposition 9. Suppose M,B and R are subsets of a topological space Ω, with R residual.

(i) If M is R-meager then M is meager. Also: B is R-Baire =⇒ B is Baire.
(ii) Suppose Ω is a BaireCat space. Then:

M is meager =⇒ M is R-meager;
B is Baire =⇒ B is R-Baire.

Consequently, when Ω is BaireCat, a subset is Baire/meager/residual iff it is R-Baire/meager/res-
idual.

Proof of (9i). Since the part of M protruding from R is meager, being inside of Ω rR, we
may assume that M is included in R. Further, we may assume that M is R-closed and has no
R-interior.

Note that R r R has no interior. Our goal is to establish that V := Interior(M) is empty. But
V ⊂M ⊂ R. So it suffices to show that

V does not intersect R,

for then V ⊂ RrR and is consequently void.
For the sake of contradiction, fix a point ω ∈ V ∩R. Each neighborhood W ∋ ω hits M and so

each R-neighborhood W ∩R of ω also hits M , since M ⊂ R. Recall that ω ∈ R and M is R-closed;
thus ω ∈M .

This shows that V ∩R ⊂M . But M has no R-interior and so V ∩R is empty, as desired.
Finally, for our R-Baire set B, we may assume that B ⊂ R, since BrR is meager, hence Baire.

So we can write B = (V ∩R)△M , with V open and with M an R-meager set. From the foregoing,
M is meager, hence Baire. Since the Baire sets form an algebra, and V,R,M are all Baire, B must
be a Baire set. �

Proof of (9ii). Our meager M can be assumed to be nowhere-dense and closed; hence M is
R-closed. To show that M is R–nowhere-dense, take an open V so that V ∩ R is the R-interior
of M . Now write R = Ω rM ′, with M ′ meager. Thus V ⊂ M ∪M ′. Since this union is meager,
the openness of V forces V to be void. Consequently, M ∩R is R-meager.

Finally, write Baire set B as U △M with U open and M meager. Then

B ∩R = (U ∩R) △ (M ∩R) = R-open △R-meager

and is consequently a Baire set relative to R. �

Pushing measures forward. Given a measurable map f : (X,X )→ (X ′,X ′), each measure µ
on X pushes forward to a measure f〈µ〉 on X ′ defined by

f
〈
µ
〉
(B′) := µ

(
f−1(B′)

)
.

A (good) measure ν gives rise to a homeomorphism, h, of the circle Y , by

h(z) := y, where z = ν
(
[0, y)

)
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for y ∈ Y . Consequently, ν
(
[0, y)

)
= m

(
[0, z)

)
= m

(
h−1

(
[0, y)

))
. Thus h “adapts”, so-to-speak,

Lebesgue measure into ν,
ν = h

〈
m

〉
.

This h is an order-preserving homeomorphism of Y which fixes 0. We will call such a homeo-
morphism an adaptation , and let H denote the set of adaptations. Easily, H is a Gδ-subset of
the Polish space C(Y ) of continuous functions—hence H is Polish [Oxt, pp. 47–50] and thus is
BaireCat, as needed by Overview. Finally, note that

Each fiber SIMν is the homeomorphic image of SIMm ,

via the map µ̂ 7→ ĥ〈µ̂〉 ;
(10a)

where here –and henceforth– for each adaptation h, we let ĥ denote the product h×Γ, which is a

homeomorphism of Ŷ .

Pushing actions to sims. Given an action T ∈ A, let T̂ denote the map y 7→ T(·, y). This is an

injection from Y →֒ Ŷ and gives a commutative diagram.

Figure 11 For each time γ ∈ Γ, the mapping bT yields

a commutative diagram. Lebesgue measure m, be-
ing T γ -invariant, pushes forward to an Sγ -invariant

measure bµ := bT
˙
m

¸
. So (S : bY , bµ), the action down-

stairs, is isomorphic to (T : Y,m).

Y
T γ

−−−−→ Y
ybT

ybT

Ŷ
Sγ

−−−−→ Ŷ

This mapping T 7→ T̂〈m〉 is an embedding A →֒SIMm. Its range is the set of “graph-sims in SIMm”.
As a first step towards residuality, we show that these are dense.

Lemma 10b. The set of “graph-sims in SIMm” is dense in SIMm.

Proof. Fix a sim ν̂ whose 1-marginal is m. Given ε and an F,P-cylinder set, we wish to find
an action T ∈ A which gives ε-equality,

m
( ⋂

γ∈F

[
T−γ

]
(Iγ)

)
ε
≈ ν̂

(⊗

γ∈F

Iγ

)
. (∗)

Fixing P, it turns out that there is a T giving actual equality above, for all subsets F ⊂ Γ and all
F,P-cylinders.

For each piece I ∈ P, let Î be corresponding time-0 set; the collection of ŷ for which ŷ[0] ∈ I.

Tautologically, ν̂(Î) = m(I) and the intersection
⋂

γ∈F

[
S−γ

]
(Îγ) equals

⊗
γ∈F Iγ .

Each Î is Borel-equivalent to an interval. Consequently there is a bi-mp Borel isomorphism ϕ

carrying probability space (Ŷ , ν̂) to (Y,m), with ϕ−1(I) = Î for each piece. Thus T := ϕSϕ−1

gives equality in (∗). �

Measures which live on a graph. Temporarily, let M denote the set of measures on Y × Y
whose two marginals are equal and good. Consider an η ∈M satisfying, for all B ∈ Y , that

∃A ∈ Y : η(A× Y ) = η(A×B) = η(Y ×B) . (12)
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Letting µ denote the marginal of η, this is equivalent to asserting that η(A×B) equals µ
(
A∩R−1(B)

)

for some µ-mpt R. The graph of R has full η-mass, and so η is called a “graph” joining.
Let C ⊂ Y be the countable algebra of sets formed by finite unions of rational-endpoint intervals

in Y . It is straightforward to check that a measure η is a graph joining iff (12) holds for each B ∈ C.
Equivalently, for ε and all such B,

∃A ∈ C : Diameter
{
η(A× Y ), η(A×B), η(Y ×B)

}
< ε .

Let Uε
B comprise such η. Since η varies over measures with non-atomic marginals, the diameter

above varies continuously with η. Thus Uε
B is open and, in consequence, the set

⋂
B∈C

⋂
εց0 U

ε
B

–the graph joinings– is Gδ in M .

General graph-sims. If each 2-dimensional marginal of sim ν̂ is a graph joining, then ν̂ is called a

graph-sim . Letting ν be Marg[ν̂], the shift-invariance of ν̂ implies that it is of the form ν̂ = R̂〈ν〉,
for a (unique) action (R : Y, ν).

Fix any two distinct times α, β ∈ Γ and consider the set of sims whose 2-marginal on Yα × Yβ

is a graph. By the paragraphs above, this is a Gδ-set of sims. Since there are but countably many
pairs in Γ, the set SIM

Graph of graph-sims is Gδ in SIM. Consequently,

SIM
Graph is a residual subset of SIM (10c)

since, courtesy of (10a,b), the graph-sims are dense in each fiber SIMν and are thereby dense
in SIM.

The embedding E

The preparation done, we can finally define embedding E : H×A →֒SIM which will fulfill the con-
ditions of Overview. Let

E(h,T) := ĥ
〈
T̂〈m〉

〉
, (13)

where, as usual, ĥ means h×Γ. Evidently, the range of E is simply SIM
Graph. In the next sev-

eral paragraphs, we establish that E is a homeomorphism by writing it as a composition of two
homeomorphisms. The first one we consider is

D(h, µ̂) := ĥ
〈
µ̂
〉
,

which is a mapping from H × SIMm onto SIM.

Is D a homeomorphism? Evidently D is a bijection. In order to simplify the discussion of
continuity properties of D, observe that for each adaptation f ∈ H :

• The composition map h 7→ fh is a homeomorphism of H. Thus ψ(h, µ̂) := (fh, µ̂) is a
homeomorphism of H × SIMm.

• D carries ψ to the mapping η̂ 7→ f̂
〈
η̂
〉
, which is a homeomorphism of SIM. (To see this,

let η̂ be ĥ〈µ̂〉.)
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Consequently, when arguing that D is continuous at a point (f, ν̂), or that D−1 is continuous

at f̂〈ν̂〉, we may assume that f is the identity map Id on Y . We now make these two arguments,
having fixed: A partition P, a P-cylinder set C =

⊗
γ∈F Iγ, and a small ε > 0. Also, let δ

denote ε
/
|F|.

D is continuous at (Id, ν̂). Fix ν̂ and consider any µ̂ sufficiently near ν̂ that µ̂(C) is ε-close
to ν̂(C). Take any adaptation h for which

∥∥h− Id
∥∥

sup
≤ δ . (∗)

Then m
(
h−1(I) △ I

)
≤ 2δ, since each piece I is an interval. Consequently,
∣∣∣∣µ̂

(⊗

γ∈F

h−1(Iγ)
)
− µ̂

(
C

)∣∣∣∣ ≤
∑

γ∈F

m
(
h−1(Iγ) △ Iγ

)

≤ |F| · 2δ = 2ε .

(∗∗)

Applied to C, then, ĥ〈µ̂〉 is 2ε-close to µ̂ and thus is 3ε-close to ν̂ = Îd〈ν̂〉. �

The inverse, D−1, is continuous at ν̂ = Îd〈ν̂〉. If ĥ〈µ̂〉 is sufficiently near ν̂, then their 1-
marginals are close enough, choosing an n with 1

n < δ/2, that

m
(
h−1

(
[0, y)

)) δ/2
≈ m

(
[0, y)

)
, for y = 1

n ,
2
n , . . . ,

n
n .

Since h preserves order on Y and fixes zero, h−1(y) is (δ/2)-close to y, for these points y. Thus

(∗) holds. Therefore on C, as (∗∗) argued, sims ĥ〈µ̂〉 and µ̂ are 2ε-close. So if ĥ〈µ̂〉 is near enough
to ν̂ that they are ε-close on C, then µ̂ is 3ε-close (on C) to ν̂.

Together with (∗), this establishes that the pair (h, µ̂) is close to (Id, ν̂). �

Remark. The two preceding arguments show that D is a homeomorphism. By restricting D, we
have the following:

The map (h, µ̂) 7→ ĥ
〈
µ̂
〉

is a homeomorphism from H × SIMGraph
m

onto SIM
Graph, (14)

where SIMGraph
m

is the set of graph-sims with marginal m.

A homeomorphism A −→ SIMGraph
m

. Recall, from Figure 11, the injection T 7→ T̂〈m〉. An

argument similar to the continuity of D shows that T 7→ T̂〈m〉 is continuous. We now show that

its inverse is continuous at an arbitrary point R̂〈m〉, where R ∈ A.
Fix ε and a time γ and a subinterval I ⊂ Y . Let J denote the subset R−γ(I). Regard J × I as

a product set, on times 0 and γ, and compute:

R̂
〈
m

〉
(J × I) = m

(
J ∩ R−γI

)
= m(J) ;

T̂
〈
m

〉
(J × I) = m

(
J ∩ T−γI

)
.

If sim T̂〈m〉 is near enough to R̂〈m〉, then the lefthand terms are ε-close.† So the righthand terms
are ε-close. Hence 2ε > m

(
T−γ(I) △ J

)
, which equals m

(
T−γ(I) △R−γ(I)

)

This argument applies for all pieces I in a partition, and for all times γ in any specified finite
set F , so actions T and R have been shown to be close. �

†This, by approximating J with a finite union J ′ of intervals, so that m(J ′ △ J) ≤ ε/2.
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Final step. The foregoing shows that the mapping
(
h,T

)
7→

(
h, T̂〈m〉

)
is a homeomorphism

of H × A onto H × SIMGraph
m

. Composing this with (14) shows that E is a homeomorphism

onto SIM
Graph, thus completing the proof of the Equivalence Theorem.
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§A Appendix

Proof of (6), first step: M is a Gδ-subset of •M. Write M = F∩N, where these denote
the sets, respectively, of full-support and non-atomic measures in •M. For two measures µ and ν,
the convolution is the measure

[
ν ∗ µ

]
(A) :=

∫

Y

µ(A⊖ y) dν(y) , (15)

where A⊖ y is the group translation {z ⊖ y | z ∈ A} in Y .
From (4), if U ⊂ Y is open then V ε

U := {µ ∈ •M | µ(U) > ε} is open. Letting B be a countable
base for the topology of Y , then,

F =
⋂

U∈B

⋃

εց0

V ε
U

is a Gδ-set.
For C ⊂ Y closed, the set

{
µ ∈ •M

∣∣ µ(C) < ε
}

is open, by (4). So V K
ε is open, where it

comprises those µ such that, for each n = 1, . . . , K: µ
([

n−1
K , n

K

])
< ε. Consequently,

N =
⋂

εց0

∞⋃

K=1

V K
ε

and so is Gδ in •M.
In order to show that N is dense in •M, take δ a small positive number and let mδ := 1

δ ·m|[0,δ)

denote normalized Lebesgue measure on [0, δ). For each ν ∈ •M, then, the convolution ν ∗mδ tends
to ν, as δ ց 0. And ν ∗ mδ is non-atomic, since mδ is non-atomic. �

Second Step: SIM is residual in •SIM. Let F and N now denote the set of sims µ̂ ∈ •SIM

whose time-0 marginal is a full-support or non-atomic measure. The foregoing shows that these
are Gδ sets in •SIM. And since all 1-marginals of a sim are equal, F ∩N = SIM.

To see that F is dense, take a particular sim µ̂ ∈ F (e.g, product measure m×Γ). For each sim ν̂,
the average (1 − δ)ν̂ + δµ̂ is in F, and tends to ν̂ as δ ց 0.

To show N dense in •
SIM, fix ν̂ and δ > 0. Again let mδ be normalized Lebesgue measure

on [0, δ), and let m̂δ be the product measure (mδ)
×Γ. Taken over the torus Ŷ , the convolution

ν̂∗m̂δ is shift-invariant and has marginal Marg[ν̂]∗mδ, which is non-atomic. As δ ց 0, furthermore,

m̂δ tends to atomic measure on the identity 0̂ ∈ Ŷ . Thus ν̂ ∗ m̂δ → ν̂. �
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Proof of (2): Free actions are dense in A. Let Fr be the set of “free sims” µ̂, i.e, (S : Ŷ , µ̂)
is a free action. By showing Fr residual in •SIM, the Equivalence theorem will tell us that the free
actions are residual in A.

Fix a time β and let Cβ :=
{
ŷ

∣∣ Sβ(ŷ) = ŷ
}
. Since Sβ is continuous, Cβ is closed and

consequently the collection
{
µ̂ ∈ •SIM

∣∣ µ̂(Cβ) < ε
}

is open. Intersecting over ε and all times β
shows that Fr is Gδ. Certainly, Fr is dense in •SIM since, from above, ν̂ ∗ m̂δ → ν̂. And ν̂ ∗ m̂δ is
free. �
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§E Extra Appendix

[Note: This appendix is not intended to go into the published paper. It is in-

tended save the trouble of looking up elementary facts in point-set topology.]

Regular-open sets. A map f from the powerset of X to itself is order-preserving if A ⊂ B
implies f(A) ⊂ f(B). The map is decreasing if fA ⊂ A for all A, and increasing if fA ⊃ A.

Fact 16. Suppose d and i are idempotent order-preserving maps, and let r denote the order-
preserving map d ◦ i.

(α) If d is decreasing, then on Range(r) the map r is decreasing.
(β) If i is increasing, then on Range(r) the map r is increasing.
(γ) If d is decreasing and i is increasing, then r is idempotent.
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Proof of (16α). Let B = r(A) be a set in Range(r). Then d(i(A)) ⊂ i(A), i.e, B ⊂ i(A).

Applying r “on the outside” gives r(B) ⊂ r(iA)
note
=== rA, since i is idempotent. So rB ⊂ B. �

Proof of (16β). For B any set, d(fB) ⊃ d(B) and so r(B) ⊃ d(B). Applying r “on the

inside” (i.e, replacing B by rA) gives r(B) ⊃ d(rA)
note
=== rA = B. �

Definition. For any set V , let r(V ) be the interior of the closure of V . Thus r(V ) is always open.
We use V to denote the closure of V , and Itr(V ) for the interior of V .

A set U is regular-open if U = r(U).
A set is a Baire set if it can be written in the form V △M , where V is open and M is meager.

Let Baire denote the class of Baire subsets of X .

Regular-open Lemma, 17. Consider subsets of a topological space X .

(a) r(·) is idempotent and thus a set is regular-open iff it is in the range of r.
(b) The boundary of any open set (or closed set) is meager.
(c) For V open, r(V ) includes V and r(V ) △ V is meager. Thus any Baire set can be written

U △M where M is meager and U is regular -open. Such a representation U △M is called
a regular-rep of the Baire set.

(d) The Baire sets are closed under complement
(e) The Baire sets are closed under countable union.
(f ) The Baire sets form a field (a sigma-algebra). All Borel sets are Baire.

Proof of (a). Immediate from (16γ), by letting d := Itr and i be the closure operator. �

Proof of (b). If U is open, then it is disjoint from its boundary ∂U , hence disjoint from the
interior of ∂U . So no point of this interior could be in U ; thus this interior is in fact empty.

Since ∂U is a closed set with no interior, it is meager.
Finally, the boundary of a closed set is also the boundary of its complement. �

Proof of (c). Certainly V ⊃ r(V ) ⊃ Itr(V ) = V . And V and V differ by a meager set. For a
Baire set B = V △M , then, U := r(V ) ⊃ V and M ′ := U r V is meager. Thus B is Baire, since
it equals (M ′ △ V ) △ (M ′ △M) –which is the symmetric-difference of U a with a meager set. �

Proof of (d). Suppose B = U △M is a Baire set. Then Bc equals U c △M .
Let V denote the interior of U c. Then

Bc =
(
V ⊔ ∂U

)
△M

=
(
V △ ∂U

)
△M = V △

(
∂U △M

)
= Open △ Meager

since, by (b), the boundary ∂U is meager, and hence so is ∂U △M . �

Proof of (e). Suppose B is a union
⋃

n(Vn △Mn) of countably many Baire sets. Then the
unions V :=

⋃
n Vn andM :=

⋃
nMn are open and meager, respectively. But V ∪M ⊃ B ⊃ V rM .

Thus V △B is a subset of M and is consequently meager. �
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Proof of (f). The preceding two parts tell us that Baire is a field. Since every open set is
Baire, this field includes the Borel-field. �

Proposition 18. For a topological space X , the following are equivalent.

(i) Each Baire set B ⊂ X has at most one (hence exactly one) regular-rep B = U △M .
(ii) X is BaireCat. Equivalently, the only meager regular-open set is void.
(iii) Each residual set is dense.

Proof of (i)⇒(ii). Suppose U is regular-open and meager. Then U △ ∅ and ∅ △ U are two
regular-reps of U . Since they must be the same, U = ∅.

In order to establish the equivalence in (ii), fix an open set V . Recall –courtesy (17c)– that
U := Itr(V ) includes V , and differs from V by a meager set. If V is meager, then so is U ; thus U
is void, and so is V . �

Proof of (ii)⇒(iii). Suppose X rM is residual. Then M must have void interior, since M is
meager. Thus X rM is dense. �

Proof of (iii)⇒(i). Suppose U △M = Û △ M̂ are two regular-representations. Now

M △ M̂ = U △ Û

and is meager. ISTShow that U△Û is empty, and so we need but show, by symmetry, that ÛrU is

empty. Letting W play the role of Û , ISTEstablish this implication:

If W r U is meager, with W open and U regular-open, then U ⊃ W .

But Meager = W r U ⊃ W r U = Open. The complement of the meager set N := W r U is
residual, hence dense by (iii). Hence N , since it is open, must be empty and so U ⊃ W . Thus
Itr

(
U

)
⊃ Itr(W ) = W . And since U is regular-open, U ⊃W as desired. �

[End of Extra Appendix.]
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