

Does Zero = One ?

J.L.F. King

30 August, 2018 (at 10:30)

Erroneousification

Here are various “proofs”^{♡1} that zero equals one. Please find the errors/gaps in each.

“Proof” e1. Note that $\frac{64}{16}$ equals 4, justified by cancelling the sixes,

$$\frac{64}{16} = \frac{64}{16} = \frac{4}{1} \stackrel{\text{note}}{=} 4.$$

Nothing is special about 4, and so

$$3 = \frac{39}{13} = \frac{39}{13} = \frac{9}{1} \stackrel{\text{note}}{=} 9.$$

Dividing gives $1 = 3$. Subtract 1 from each side, then halve, to obtain $0 = 1$. ♦

No Man Clay Ture. *Henceforth, I call these vignettes Poofs; when you look at the argument more closely, it just disappears.*

Proof e2. Write $0 = 1$. So $0 = 1$. Done. ♦

Proof e3. Write $0 = 1$. Multiplying by -6 gives $0 = -6$. Adding 3 gives $3 = -3$, so squaring gives $[3]^2 = [-3]^2$; that is, $9 = 9$. Which is *true!* QED ♦

Proof e4. The 9×9 checkerboard can not be tiled by dominos, since 9 is odd. Neither can the 7×7 checkerboard (same reason), hence $7 = 9$. Subtracting gives $0 = 2$. Now divide by 2. ♦

Proof by induction, e5. For $k = 10^n$, we prove that $k = 10 \cdot k$.

Base case. Well, $0 = 10 \cdot 0$, so done.

Induction. Assume $k = 10 \cdot k$ for some $k = 10^n$. Multiplying by 10 gives $10k = 100k$. Plug in 10^n ; so $10 \cdot 10^n = 100 \cdot 10^n$. Thus $10^{n+1} = 10 \cdot 10^{n+1}$. So the proposition holds for $k = 10^{n+1}$. **QED** ♦

Corollary to e5. Plug in $k = 10^2$; so $100 = 10 \cdot 100$. Now subtract 100 to get $0 = 900$. Divide by the weight of a 900 pound Gorilla. So $0 = 1$. (And the Gorilla is on quite a diet.) ♦

Proof A. Square-rooting equality $\frac{-1}{1} = \frac{1}{-1}$ gives

$$\sqrt{\frac{-1}{1}} = \sqrt{\frac{1}{-1}} \quad \text{which} \quad \frac{\sqrt{-1}}{1} = \frac{1}{\sqrt{-1}}.$$

Cross multiply to solve:

$$[\sqrt{-1}]^2 = 1^2 \implies -1 = 1 \implies 0 = 1. \quad \text{♦}$$

Proof B. Factoring, $a^2 - a^2 = [a + a][a - a]$. Hence

$$a[a - a] = 2a[a - a] \implies a = 2a \implies 1 = 2 \implies 0 = 1. \quad \text{♦}$$

Proof C. Consider $\int \frac{1}{t} dt$. Integrate by parts, using

$$u := \frac{1}{t} \text{ and } v := t. \quad \text{Thus } du = -\frac{1}{t^2} dt \text{ and } dv = dt.$$

Applying $\int u dv = uv - \int v du$ yields

$$\int \frac{1}{t} dt = \frac{1}{t} t - \int \frac{-1}{t^2} \cdot t dt = 1 + \int \frac{1}{t} dt.$$

Subtracting $\int \frac{1}{t} dt$ from each side gives $0 = 1$. ♦

Proof D. Letting $N := 4x$, we can write

$$4x \cdot x = \overbrace{x + x + x + \dots + x}^{N \text{ times}}.$$

Differentiate w.r.t x . Thus $\frac{d}{dx}(4x^2) \stackrel{\text{note}}{=} 8x$ equals

$$\frac{d}{dx}(\overbrace{x + x + \dots + x}^{N \text{ times}}) = \overbrace{1 + 1 + 1 + \dots + 1}^{N \text{ times}} \stackrel{\text{note}}{=} N.$$

Thus $8x = N \stackrel{\text{def}}{=} 4x$. Since this eqn $8x = 4x$ holds for all x , we get $8 = 4$. Halving twice gives $1 = 0$. ♦

^{♡1} Arguments (e1) and (D) are my modifications of “puns” I’ve seen. Arguments (e2)–(e5), I’ve graded more times than I can count.

I do not know the authors of the other fantasies....

"Pf" E. Define $s := \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \dots$

This righthand sum converges, by the Alternating-series Test, to a value s satisfying $1 > s > 1 - \frac{1}{2}$.

In particular, $(s \neq 0)$. Gather this sum four-terms-at-a-time, so as to write s as

$$\begin{aligned} & \left[\frac{1}{1} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \dots \right] \\ & + \left[-\frac{1}{2} - \frac{1}{6} - \frac{1}{10} - \dots \right] \\ & + \left[-\frac{1}{4} - \frac{1}{8} - \frac{1}{12} - \dots \right] \end{aligned}$$

The top two long-brackets sum to

$$\sum_{D=1,3,5,7,\dots} \left[\frac{1}{D} - \frac{1}{2D} \right] \stackrel{\text{note}}{=} \sum_{D=1,3,5,7,\dots} \frac{1}{2D}.$$

The bottom long-bracket is $\sum_{n=1}^{\infty} \frac{-1}{4n}$. Doubling s gives

$$\begin{aligned} 2s &= \left[\sum_{D=1,3,5,\dots} \frac{1}{D} \right] + \left[\sum_{n=1}^{\infty} \frac{-1}{2n} \right] \\ &= \left[\sum_{\substack{D \in \mathbb{Z}_+, \\ \text{with } D \text{ odd}}} \frac{1}{D} \right] + \left[\sum_{\substack{E \in \mathbb{Z}_+, \\ \text{with } E \text{ even}}} \frac{-1}{E} \right] \\ &= \sum_{k=1}^{\infty} \frac{[-1]^k}{k}. \end{aligned}$$

Hence $2s = s$. From above, $s \neq 0$; so dividing gives $2 = 1$. Thus $1 = 0$, as desired. \spadesuit

Poof F. Recall $e^{i\pi} + 1 = 0$; so $e^{i\pi} = -1$. Hence $e^{i\pi} = i^2$. Taking logs (naturally, naturally),

$$i\pi = \log(i^2) = 2\log(i).$$

Consequently, $2\pi = \frac{4\log(i)}{i}$. So

$$2\pi = \frac{\log(i^4)}{i} = \frac{\log(1)}{i} = \frac{0}{i} = 0.$$

Dividing by π gives $2 = 0$. Hence $1 = 0$. \spadesuit

Poof G. The function e^z omits the number 0 from its range, so the composition e^{e^z} omits $1 = e^0$ as well as 0. But compositions of entire functions are entire, and the Little Picard-Theorem says that a non-constant entire function omits at most one complex value from its range. This forces that $0 = 1$. \spadesuit