

Staple!

Ord: _____

Abstract Algebra **Z-InClass** Prof. JLF King
MAS4301 4864 Touch: 17Sep2019

Hello. Open brain, closed book/notes. Use $\varphi()$ for the Euler phi-fnc and **C.N** for “cycle notation”. Use $k!$ to mean “ k factorial”. Write expressions unambiguously e.g., “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with **negative** signs!)

Z7: Show no work.

Z Professor King sometimes gives freebie questions.
Circle one: **True** **Right On!** **Who?**

a $\varphi(49000) =$.
Express your answer a product $p_1^{e_1} \cdot p_2^{e_2} \cdots$ of primes to powers.

b A posint N is st. $\mathbf{U}(N)$ is cyclic. Using $\varphi()$, group $\mathbf{U}(N)$ has many generators.

c With p prime, the number of order- p elements in \mathbb{S}_p is .

d+ Permutation σ has cycle-lengths 35, 7, 5, 5, 4, 4, 4, 6, 6. $\text{Ord}(\sigma) =$.
Perm σ is **Circle**: **Even** **Odd**

e+ We have $\rho, \pi \in \mathbb{S}_7$ where, in our cycle nota., $\rho := (16)(375)\overline{24}$ and $\pi := (134)(25)\overline{67}$. In std disjoint C.N., then, $\rho \circ \pi =$.

f+ Using ε and products $R^i F^j$, list the elements of $\text{Center}(\mathbb{D}_4)$:

g+ Easily, $\varphi(25) =$. Consequently,
 $9^{122} \equiv_{25} \dots \in [0..25)$. [Hint: Fermat, Euler, working mod 25.]

Z8: OSSOP: A (possibly non-Abelian infinite) group G has exactly one nt-proper subgp H . Prove that G is finite cyclic, of order p^2 , for some prime p .

Z9: OSSOP: The Turnstile puzzle has $N=20$ tokens and a spinner of width $W=4$. Prove rigorously that all patterns are obtainable. You may use, without proof,

that A.T.s (adjacent transpositions) in all 20 positions, generate all of \mathbb{S}_{20} .

Are all patterns obtainable, with both the spinner-dot UP and spinner-dot DOWN? Prove or disprove!

Bonus: The number of subgroups of group $(\mathbb{Z}_{8100}, +, 0)$ is .
Express your answer as a product in a natural way.
[Hint: $81 = 3^4$.]

End of Z-InClass

Z-Home:	_____	430pts
Z7:	_____	100pts
Z8:	_____	45pts
Z9:	_____	65pts
Bonus:	_____	15pts

Total: _____ 640pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor (or his colleague).*
Name/Signature/Ord

Ord: _____