

Staple!

Team: _____

Abstract Algebra
MAS4301 4864

Z-Home

Prof. JLF King
Touch: 6May2016

Hello. The order of your hand-in should be: PROBLEM SHEET (P-S, this side up), TYPESETTING CONVENTIONS (if any), followed by the write-up to each question.

General instructions are on the CHECKLIST.

Z1: Please write a proof for #24Page132. Isomorphic as rings? (Jog: $\sqrt{2}$ -gp and matrix-gp iso.)

Z2: Please write a proof for #26Page132. (Jog: The quaternion 4-gp is not iso. to \mathbb{D}_4 .)

Z3: Prove #34Page90. Pictures will help. (Jog: A gp with exactly one nt-proper subgp looks like what?)

Z4: Please write a proof for #16Page148. [Hint: Lagrange's Thm.] (Jog: $a^{\varphi(N)} \equiv_N 1$.)

Z5: On the 4×4 TTT (TicTacToe) board, let G denote the TTT-automorphism group. This is the set of self-bijections of $[1..4] \times [1..4]$ which preserve all TTTs. A particular TTT-auto is the *swizzle*, S : It exchanges each corner square with the central square that it (diagonally) touches; and it does The Right Thing (tm) on the edge squares.

a Find a TTT-auto T which is **not** in the subgp $\langle \text{Isometries}, S \rangle$, yet $\langle \text{Isometries}, S, T \rangle$ is all of G .

b Compute the order of G . Find a set of *involutions* which generates G . What is a *minimum cardinality* generating set for G ?

Compute the center of G ; what is its order?

c For $K = 1, 2, \dots$, let G_K denote the TTT-automorphism gp of the $K \times K$ board. Writing K as $K = 2H$ or $K = 2H + 1$, as K is even or odd, compute the order of G_K in terms of H . How many *really different* (i.e, non-isomorphic) first moves are there?

What is the smallest generating set that you can find for G_K ?

d On the $4 \times 4 \times 4$ TicTacToe board (Qubic), what is a 3-dim'al analog of The Swizzle? How many *really different* first moves are there? (ExtraCredit: Give a generating set for the gp TTT-autos, G_{Qubic} .)

Z6: Turnstile: It has 20 *tokens* in an oval-track, as well as a *spinner* that reverses the order of 4-consecutive tokens at the 12o'clock position.

i Show that every pattern is obtainable. [Hint: Obtain an adjacent transposition.]

ii Let $N := \#\text{Tokens}$. For odd $N > 4$, show that a transposition is NOT obtainable. Are all even patterns obtainable?

iii The *width* of the spinner is $W=4$. What can you say for general $W \geq 3$ and various (all?) N ?

End of Z-Home

Z1:	_____	35pts
Z2:	_____	35pts
Z3:	_____	65pts
Z4:	_____	25pts
Z5:	_____	135pts
Z6:	_____	135pts

Total: _____ 430pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." Name/Signature/Ord*

Ord:

.....

Ord:

.....

Ord:

.....