

Z1: Short answer. Show no work.Please PRINT your **name** and **ordinal**. Ta:

Ord: _____

a Give an example of integers $x, y > 100$, neither prime, so that $x \perp y$.

$$x = \text{_____} \quad \text{and} \quad y = \text{_____}.$$

b Consider a tuple $\mathbf{b} = \langle b_{M-1}, b_{M-2}, \dots, b_1, b_0 \rangle$ of coefficients $b_j \in [-1..1]$, such that $b_{M-1} \neq 0$ and

$$\sum_{j=0}^{M-1} b_j \cdot 3^j = 248.$$

Then $M = \text{_____}$ and $\mathbf{b} = \langle \text{_____} \rangle$.**Note.** The next questions refer to mapping $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(N) := t - 2u$, where we have written N as $N = 10t + u$ with $t \in \mathbb{Z}$ and $u \in [0..9]$.**c** Compute please: $f \circ 3(57218) = \text{_____}$.**d** If $f(K) = 18$, then a possible value for K is _____ .**e** Applying f nine times to N , we discover that

$$f^{\circ 9}(N) \equiv_7 1.$$

Letting b be the value in $[-3..3]$ such that $N \equiv_7 b$, we have that $b = \text{_____}$.**Note.** For the following problem please carefully write up your solution on separate sheets of paper. Show all work —there *is* partial credit.**Z2:** You may use, without proof, that if $x \perp y$ then there exists integers S and T so that $xS + yT = 1$.Prove this: If $a \neq 0$ and b, c are integers with $a \perp b$, then

$$a \bullet bc \implies a \bullet c.$$

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature: _____