

Hello. This practice prereq is to help you self-evaluate on material you should review.

Without reviewing anything, no books, no internet, take 65 minutes to do as many of the problems below that you can. Then relax for a while... Then use books/internet to grade yourself.

Short-answer: Show no work. *NOTE:* The inverse-fnc of g , often written as g^{-1} , is *different* from the reciprocal fnc $1/g$. E.g., suppose g is invertible with $g(-2) = 3$ and $g(3) = 8$: Then $g^{-1}(3) = -2$, yet $[1/g](3) \stackrel{\text{def}}{=} 1/g(3) = 1/8$.

Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$.

el1 The slope of line $3[y - 5] = 2[x - 2]$ is

Point $(-4, y)$ lies on this line, where $y =$

el2 Line $y = [M \cdot x] + B$ owns points $(4, 3)$ and $(-2, 5)$. Hence $M =$ and $B =$

el3 Line $y = Mx + B$ is orthogonal to $y = \frac{1}{3}x + 2$ and owns $(2, 1)$. So $M =$ and $B =$

q1 The solutions to $3x^2 = 2 - 2x$ are $x =$

q2 The four solutions to $[y - 2] \cdot y \cdot [y + 2] = -1/y$ are $y =$

[Hint: Apply the Quadratic Formula to y^2 .]

e1 $[\sqrt{3}^{\sqrt{2}}]^{\sqrt{8}} =$. $\log_{64}(16) =$

i Let $y = f(x) := [2 + \sqrt[5]{x}]/3$. Its inverse-function is $f^{-1}(y) =$

id1 Suppose g is a fnc with g' never zero. Let h be the inverse-fnc of g . In terms of h , g , g' and x , write a formula for $h'(x) =$

[Hint: The Chain rule. NOTE: h is NOT $1/g$.]

id2 Let $g(x) := x^3 + x$. Then $g^{-1}(10) =$

and $[g^{-1}]'(10) =$

de2 On those x where $\sin(x) > 0$, define $B(x) := [\sin(x)]^x$. Its derivative is

$B'(x) =$

[Hint: How is y^z , for $y > 0$, defined ITOF the exponential fnc?]

dc1 Below, f and g are differentiable fncs with

$$\begin{aligned} f(2) &= 3, & f(3) &= 5, & f'(2) &= 19, & f'(3) &= 17, \\ g(2) &= 11, & g(3) &= 13, & g'(2) &= \frac{1}{2}, & g'(3) &= 7, \\ f(5) &= 43, & g(5) &= 23, & f'(5) &= 41, & g'(5) &= 29. \end{aligned}$$

Define the composition $C := g \circ f$. Then $C(2) =$; $C'(2) =$

Please write each answer as a product of numbers; **do not** multiply out. [Hint: The Chain rule.]

sg1 Compute the sum of this geometric series:

$$\sum_{n=3}^{\infty} [-1]^n \cdot [3/5]^n =$$

sg2 For natural number K , the sum

$$\sum_{n=3}^{3+K} 4^n \text{ equals}$$

sg3 $\sum_{n=1}^{\infty} r^n = \frac{5}{8}$. So $r =$ or **DNE**.

[Hint: The sum starts with n at **one**, not zero.]

sc The series $\sum_{k=1}^{\infty} \frac{[-1]^k}{\log(k)}$ (circle one): Diverges,

Converges absolutely, Converges conditionally.

pf Partial-fraction decomposition:

$$\frac{x+1}{x^2+x-2} = \frac{1}{\dots} + \frac{1}{\dots}.$$

Short-answer: Sets&Logic stuff:

B Binomial coefficient $\binom{7}{4} =$ =

C Relation **R** is a binrel on set \mathbb{Z}_+ , defined by **xRy** IFF $x^2 = 5y$.

Assertion “Relation **R** is reflexive” is **T** **F**

Assertion “Relation **R** is antireflexive” is **T** **F**

As On \mathbb{Z} , the statement “operator $+$ is *associative*” means: *For all* \dots in \dots *it is the case that*