

Hello. Open brain, closed book/notes. Use $\varphi()$ for the Euler phi-fnc and C.N for “cycle notation”. Answers can be given ITOf factorial, multinomial coeffs, and powers.

Y6: Short answer: Show no work. Write **DNE** if the object does not exist or the operation cannot be performed.
NB: $\mathbf{DNE} \neq \{\} \neq 0 \neq \text{Empty-word}$.

[z] In a commutative group, STOP equals Circle one:
TOPS SPOT POTS OPTS qOTs

[a] In 4×4 TTT, with 1st move in the corner, the number of *Really Different* 2nd moves is _____.

[b] In \mathbb{S}_{10} , the max-EltOrd is _____. Each elt with this order has cycle-lengths _____.

[c+] In \mathbb{S}_6 , the two CLSs (Cycle-Length Structures) that yield order-6 elements are:
CLS1= _____ and CLS2= _____.

The **number of elements** with each CLS is
#Elts1= _____ and #Elts2= _____.

[d+] Create an elt $g \in \mathbb{A}_{11}$ with $g^{-1}\alpha g = \beta$, where
 $\alpha := (1\ 2\ 3)(4\ 5\ 6\ 7)(8\ 9\ 10\ 11)$;
 $\beta := (1\ 3\ 2)(4\ 5\ 7\ 6)(8\ 9\ 11\ 10)$.

In std-C.N, $g=$ _____.

[e] Easily, $\varphi(125)=$ _____. Consequently,

$$123^{2005} \equiv_{125} \text{_____} \in [-62..62].$$

[Hint: Fermat, Euler, working mod 125.]

[f] In $\mathbb{Z}_7 = [-3..3]$, give an r.i (reasonable interpretation) to $\frac{3}{5} =$ _____, $\sqrt{-2} =$ _____.
All values that are a r.i of $\sqrt[3]{1}$: _____.

Y7: Let $\Gamma := [G, G]$ denote the the commutator subgp of G .

[i] Prove that Γ is *strongly normal* (characteristic) in G . [Hint: I.e, that each $\alpha \in \text{Aut}(G)$ preserves Γ .]

[ii] Prove that G/Γ is abelian.

[iii] Consider a subgp $N \triangleleft G$, with $\frac{G}{N}$ abelian. Prove that $N \supset \Gamma$.

[iv] Imagine a subgp H with $\Gamma \subset H \subset G$. Prove that $H \triangleleft G$. [Hint: Does ISTShow, given $g \in G$ and $h \in H$, that $ghg^{-1}H \subset H$?]

Y8: State the Orbit-Stabilizer Theorem, where a gp G acts on a set Ω , both finite. Prove the O-S Thm. [Hint: PC for defining what it means for G to “*act on*” Ω ; what an *orbit* (of what?) is; what a *stabilizer* (of what?) is.]

Y9: State Dirichlet's Thm.

Bonus: Prove that $\text{Inn}(G) \triangleleft \text{Aut}(G)$. [Hint: Just chase the definitions.]

No groups were harmed in the making of this exam.

Y-Home:	_____	495pts
Y6:	_____	90pts
Y7:	_____	110pts
Y8:	_____	85pts
Y9:	_____	15pts
Bonus:	_____	15pts

Total: _____ 795pts

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor (or his colleague).”
Name/Signature/Ord _____