

Calc III
MAC2313 3191

Y-class

Prof. JLF King
Touch: 4Aug2016

Please. Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\cdots$. Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g., write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$. Write expressions unambiguously e.g., “ $1/a + b'$ should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with **negative** signs!)

Y4: Show no work.**Z**

Prof. King believes that writing in complete sentences aids in communicating technical ideas. *Circle* one: **True** **What's a sentence?** **DNE**

a⁺

Let $P_0 := (2\pi, 1, 2)$. Compute the gradient of $h(x, y, z) := xy + z \cdot \sin(x)$.

$[\nabla h](P_0) =$ _____

Give an example of a *polynomial* f which has a saddle-point at $(-8, 7)$.

$f(x, y) :=$ _____

b⁺

In \mathbb{R}^3 , let S be the surface

$$6x - 3x^2 + 3 = 2y^2 + z^2.$$

Vector $\mathbf{v} =$ _____ $\neq \mathbf{0}$ is $\perp S$ at $Q := (0, 1, 1)$.

In form $A[x - x_0] + B[y - y_0] + C[z - z_0] = 0$, write an *equation* for the tangent plane to S at Q .

Eqn:

Have arranged that A, B, C are **integers** with no common factor; also, that $A \geq 0$.

c⁺

Let $f(x, y) := x + 8y$. *Subject to the constraint that* $y^2 = x$, compute the location (x_0, y_0) of a **global maximum** of f , and compute the location (x_1, y_1) of a **global minimum** of f .

Max = (_____, _____); Min = (_____, _____).

d

An object in the first octant occupies the cube $[0, L] \times [0, L] \times [0, L]$. The mass-density at each point in the cube is equal to the square of the point's distance from the origin, so the **total mass** of

the object is _____.

Y5: A box [rectangular parallelepiped] lies in the first octant, with three faces on the coordinate-planes and one vertex, agree to call it P , on the plane $2x + y + 4z = 12$. Use Lagrange Multipliers to compute the (unique) value of P which *maximizes* the *volume* of the box.

First, draw a large clear picture of the octant and the plane. Compute and label the x, y, z -intercepts of the plane, so that your picture is accurate. Now compute the four Lagrange equations: [The first eqn. is the constraint eqn.]

$C_f :$

$L_x :$

$L_y :$

$L_z :$

Now solve the system to compute [fill in the three blanks] $P = ($ _____, _____, _____ $)$.

End of Y-class

Y-home: _____ 460pts

Y4: _____ 180pts

Y5: _____ 50pts

Total: _____ 690pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor (or his colleague).*
Name/Signature/Ord