

Staple!

Sets and Logic
MHF3202 8768

Class-Y

Prof. JLF King
Touch: 17Nov2018**Y1:** Short answer. Show no work.Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.**a** Repeating decimal $2.3\overline{84}$ equals $\frac{n}{d}$, where posints
 $n \perp d$ are $n =$ and $d =$ **b** Let \mathcal{P}_∞ denote the family of all *infinite* subsets of \mathbb{N} . Define relation \bowtie on \mathcal{P}_∞ by: $A \bowtie B$ IFF $A \cap B$ is infinite. Stmt "This \bowtie is an equivalence-relation" is: $T \quad F$ **c** An explicit bijection $G: [2.. \infty) \leftrightarrow \mathbb{Z}$ is this:When n is *even*, then $G(n) :=$ When n is *odd*, then $G(n) :=$ **d** 16 and 6 and 13The map $H(k, n) := 2^k \cdot [1 + 2n]$ is a bijection from $\mathbb{N} \times \mathbb{N} \leftrightarrow \mathbb{Z}_+$. And $H^{-1}(208) = ($,,**e** A bijection $f: [7, 8] \leftrightarrow (0, 1)$ is: $f(7) :=$, ; $f($, $) :=$, for each $k \in$, ;and $f(x) :=$, for each $x \in (7, 8] \setminus C$,where $C :=$, .**f** Sequence $\vec{L} := (L_n)_{n=0}^\infty$ is defined by $L_0 := 5$, $L_1 := 4$, and $\boxed{\forall n \in \mathbb{N}: L_{n+2} = 2L_{n+1} + 15L_n}$. This im-plies $\boxed{\forall k \in \mathbb{N}: L_k = [P \cdot \alpha^k + Q \cdot \beta^k]}$, for real numbers $\alpha =$, $< \beta =$ OYOP: In grammatical English *sentences*, write your essay on every *third* line (usually), so that I can easily write between the lines. Please put your ordinal also on the back of the last page, **large**, right-side-up.**Y2:** **a** The powerset $\mathcal{P}(\Omega)$ of set Ω , is... .**b** Give a complete proof that there is no surjection $h: \Omega \rightarrow \mathcal{P}(\Omega)$. In particular, given a map $h: \Omega \rightarrow \mathcal{P}(\Omega)$, explicitly construct a set $S_h \subset \Omega$ which is *guaranteed to not* be in the range of h .**c** When $\Omega := \{M, L, C\}$, the three Stooges, consider this map

$$\begin{aligned} g(M) &:= \{M, L, C\} ; \\ g(L) &:= \{M, C\} ; \\ g(C) &:= \{\} . \end{aligned}$$

Your $S_g = \{$, $\}$.

End of Class-Y

Y1: 140pts**Y2:** 55pts

Not triple-spaced: -15pts

Ouch!, scratch work
handed-in : -5pts**Total:** 195ptsPlease PRINT your *name* and *ordinal*. Ta:Ord:
.....**HONOR CODE:** "I have neither requested nor received help on this exam other than from my professor."

Signature: