

Note. All variables range over the integers, unless otherwise specified.

Y1: FITBlank: Show no work (no partial credit).

a Find integers s and t so $187s + 437t = 1$.
 $s =$ and $t =$.

b Find the integer x , with $0 \leq x < 437$, solving the congruence $30 + 187x \equiv 1, \text{ mod } 437$.
 $x =$.

c Find integers α, β, γ so that $42\alpha + 35\beta + 30\gamma = 1$.
 $(\alpha, \beta, \gamma) = ($, , $)$.

Note. For the following problem please carefully write up your solution on separate sheets of paper. Show all work –there *is* partial credit.

Y2: The number $p := 1217$ is prime. Use the “repeated squaring, mod p ” technique to compute the Legendre symbols $\left(\frac{5}{p}\right)$ and $\left(\frac{19}{p}\right)$, showing me the steps. Which of $\{5, 19\}$ has a mod-1217 square-root?

Y3:

i Show all steps, except the $\frac{1}{2}$ tables, to compute a magic tuple \mathbf{G} so that $g: \mathbb{Z}_5 \times \mathbb{Z}_6 \times \mathbb{Z}_7 \rightarrow \mathbb{Z}_{210}$ is a ring-isomorphism, where

$$g((z_1, z_2, z_3)) := \langle z_1G_1 + z_2G_2 + z_3G_3 \rangle_{210}.$$

ii Consider poly $h(x) := [x - 2][x - 32][x - 8]$. Find all solutions to congruences $h(x) \equiv_M 0$, for $M = 5, 6, 7$, displaying the *results* in a nice table. (Do **not** show work for this step.)

Now use your ring-iso to compute *all* solns x to $h(x) \equiv_{210} 0$, displaying the results in a table which shows which 3tup each came from. There are (not counting multiplicities) $K :=$ many solns.

Explain your method well; then show one computation giving a root *different* (mod 210) from 2, 32, 8.

Y4: Fix an odd prime p . **i** Give a simple proof that, mod p , the number 1 has only ± 1 as square roots.

ii Use the foregoing to prove *Wilson's theorem*, which states that $[p - 1]! \equiv_p -1$.

Y1: 90pts
Y2: 100pts
Y3: 110pts
Y4: 90pts

Total: 390pts

Please PRINT your name and ordinal. Ta:

Ord: