

Y1: Show no work.

Z If $\lim_{x \rightarrow 0^+} 8/x$ equals ∞ , then $\lim_{x \rightarrow 0^+} 5/x$ is **Circle**:

Prof. King's beret **Brine**

a U.F. $x = x(t)$ satisfies $2x^{(3)} + 5x^{(2)} - x = 0$.

Then $\mathbf{Y} := \begin{bmatrix} x \\ x' \\ x'' \end{bmatrix}$ satisfies $\mathbf{Y}' = \mathbf{M} \cdot \mathbf{Y}$, where \mathbf{M} is

this 3×3 matrix of numbers:

$$\mathbf{M} = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}.$$

b FnCs $x(t)$ and $y(t)$ satisfy this system of DEs,

$$\begin{aligned} x' + 4x - y &= 0, \\ y' + 2x + 7y &= 0. \end{aligned}$$

It can be written as $\mathbf{Z}' = \mathbf{R} \cdot \mathbf{Z}$,

where $\mathbf{Z} := \begin{bmatrix} x \\ y \end{bmatrix}$ and \mathbf{R} is matrix

.....

Characteristic poly of \mathbf{R} is $\varphi_{\mathbf{R}}(z) =$

.....

A soln has $x(t)$ a linear combination of $e^{\alpha t}$ and $e^{\beta t}$
 for numbers $\alpha =$ and $\beta =$

c Fnc $y_{\alpha, \beta}(t) = \alpha e^{At} + \beta e^{Bt} + P \cdot \sin(t) + Q \cdot \cos(t)$
 is the general soln to

$$*: \quad 3y'' + 4y' + y = \cos(t),$$

with numbers $A =$, $B =$, $P =$, $Q =$

d Matrices $\mathbf{B}, \mathbf{U}, \mathbf{N}$ are 3×3 , with \mathbf{B} invertible and \mathbf{N} nilpotent. [Use \mathbf{I} for the 3×3 identity matrix.]

Matrix $\mathbf{B}\mathbf{N}\mathbf{B}^{-1}$ is nilpotent: **AT AF Nei**

Each entry of $e^{t\mathbf{N}}$ is a polynomial: **AT AF Nei**

Matrix $e^{\mathbf{N}}$ is nilpotent: **AT AF Nei**

\mathbf{N}^2 is the zero-matrix: **AT AF Nei**

Matrix $e^{[\mathbf{U}+\mathbf{I}]\mathbf{U}}$ equals $e^{\mathbf{U}} \cdot e^{\mathbf{U}^2}$: **AT AF Nei**

Matrix $e^{[\mathbf{U}^2]}$ equals $[e^{\mathbf{U}}]^2$: **AT AF Nei**

Y2: Show no work.

e Consider linear DiffOp

$$V(y) := ty'' - [1+t]y' + y.$$

Verify [for yourself] that $V(Y_0) = 0$ and $V(Y_1) = 0$, where $Y_0 := e^t$ and $Y_1 := 1+t$. Their Wronskian is

$$W(Y_0, Y_1) = \begin{vmatrix} Y_0 & Y_1 \\ Y_0' & Y_1' \end{vmatrix} = \begin{vmatrix} e^t & 1+t \\ e^t & 1+1 \end{vmatrix} = e^t - e^t = 0.$$

$$y_{\alpha, \beta} :=$$

$$y_{\alpha, \beta} := \begin{vmatrix} Y_0 & Y_1 \\ Y_0' & Y_1' \end{vmatrix} = \begin{vmatrix} e^t & 1+t \\ e^t & 1+1 \end{vmatrix} = e^t - e^t = 0.$$

is the general soln to $V(y_{\alpha, \beta}) = 3t^2$.

f With $f(x) := e^{7x}$ and $g(x) := e^{4x}$, then

$$[f \circledast g](5) = \begin{vmatrix} f & g \\ f' & g' \end{vmatrix} = \begin{vmatrix} e^{7x} & e^{4x} \\ 7e^{7x} & 4e^{4x} \end{vmatrix} = 7e^{7x} \cdot 4e^{4x} - e^{7x} \cdot 7e^{4x} = 21e^{11x} - 7e^{11x} = 14e^{11x}.$$

With $\mathbf{1}()$ the constant-1 fnc and $F(x) := \sin(5x)$, then, convolution

$$[\mathbf{1} \circledast F](x) = \begin{vmatrix} \mathbf{1} & F \\ \mathbf{1}' & F' \end{vmatrix} = \begin{vmatrix} 1 & \sin(5x) \\ 0 & 5\cos(5x) \end{vmatrix} = 5\cos(5x).$$

End of Y-Class

Y1: _____ 140pts

Y2: _____ 95pts

Total: _____ 235pts