



Staple!

Team: \_\_\_\_\_

Abstract Algebra  
MAS4301 4864

X-Home

Prof. JLF King  
Touch: 6May2016

**Hello.** Essays violate the CHECKLIST at *Grade Peril!* Expression “**NSIShow**” stands for “Next semester I’ll show”. Use **SoTS** for “Sum of Two Squares”, e.g,  $5 = 1 + 4$  is a SoTS, but 3 is not a SoTS.

Exam is due by **10AM, Friday, 09Dec2005**.

**X1:** Show no work.

**a** A monic  $\mathbb{Q}$ -poly with  $\sqrt[3]{3} + \sqrt[2]{5}$  as a root is \_\_\_\_\_.

**b** Write each prime  $p$  below as a SoTS, and find  $i \in [1..p)$  such that  $i^2 \equiv_p -1$ .

| $p$ | $S_1 + S_2$ | $i$ |
|-----|-------------|-----|
| 5   | $1 + 4$     | 2   |
| 13  |             |     |
| 17  |             |     |
| 29  |             |     |

Next semester I’ll show that oddprime  $p$  is SoTS *IFF*  $-1$  is a quadratic residue mod  $p$  *IFF*  $p$  is of the form  $1 + 4n$ .

Write  $65 = \underline{\quad} + \underline{\quad}$  as a SoTS in two ways,  $65 = \underline{\quad} + \underline{\quad}$ .

(NSIShow that the number of ways (*caveat*) is  $2^{K-1}$ , where  $K$  is the number of 4pos primes in its factorization.)

**c** Suppose  $f(t) := t^2 - St + P = [t - \alpha][t - \beta]$  is a  $\mathbb{Q}$ -poly irreducible over  $\mathbb{Q}$ ; so  $\alpha, \beta \in \mathbb{C} \setminus \mathbb{Q}$ . Given rationals  $x, y$  NBZero, write  $\frac{1}{x+y\alpha}$  as  $X + Y\alpha$ , where  $X = \underline{\quad}, Y = \underline{\quad}$ , are explicit rational-expressions in  $x, y, S, P$ .

**d** As polys in  $\mathbb{Z}_7[x]$ , let

$$f(x) := 2x^4 - 5x^3 - 5x^2 - 16x - 4; \\ g(x) := 6x^3 - 23x^2 + x + 2.$$

Write t.fol polys, using coeffs in  $[-3..3]$ . Let  $D$  be  $\text{Ged}(f, g)$ . Then  $D(x) = \underline{\quad}$ .

Compute polys  $S(x) = \underline{\quad}, T(x) = \underline{\quad}$ , with  $Sf + Tg = \bar{D}$ .

**X2:** A gp  $G$  acts on a set  $\Omega$ , both finite. Let  $\text{Fix}(g) := \{\omega \in \Omega \mid g\omega = \omega\}$ .

**i** Given a bijective proof that

$$1: \quad \sum_{\omega \in \Omega} |\text{Stab}(\omega)| = \sum_{g \in G} |\text{Fix}(g)|.$$

ii

Use the Orb-Stab Thm and prove that

$$2: \quad \#\text{Orbits} = \frac{1}{|G|} \cdot \sum_{g \in G} |\text{Fix}(g)|.$$

iii

Color the 6-faces of a cube red, white and blue. Use (2) to count, up to (orientation preserving) rotation, the number of distinct 3-colorings. Write  $c(N)$ , the  $\#[N\text{-colorings}]$ , as a **polynomial** in  $N$ . [Hint:  $c(0) = 0$  and  $c(1) = 1$ ]

**X3:** A **PB** (pegboard) is  $\mathbf{B}_{\vec{L}} := [0..L_1] \times \dots \times [0..L_D]$  or, more gen., a finite connected subset  $\mathbf{B} \subset \mathbb{Z}^{\times D}$ . Some cells are occupied by pegs. A jump goes from  $\bullet\bullet\circ$  to  $\circ\circ\bullet$ , and can be applied in all of the  $2D$  directions. A **psn** (position) is a map  $\Lambda: \mathbf{B} \rightarrow \{\bullet, \circ\}$ ; write  $\Lambda \rightsquigarrow \Lambda'$  if one can jump from  $\Lambda$  to  $\text{psn } \Lambda'$ . For a cell  $c \in \mathbf{B}$ , let  $c^\bullet$  mean that  $c$  is occupied and all other cells are empty. For cells  $b, c$ , write  $b \rightsquigarrow c$  if  $b^\circ \rightsquigarrow c^\bullet$ . Say that  $b$  is **blocked** (w.r.t  $\mathbf{B}$ ) if

there is no  $c \in \mathbf{B}$  with  $b \rightsquigarrow c$ . **a** (Use K4 for the Klein-4 argument.) On  $\mathbb{Z}^{\times D}$ , what are the K4-equiv-classes, and how many are there? What are the K4-blocked positions in  $\mathbf{B}_{\vec{L}}$ ? In  ${}^3+{}^7$ ? In  ${}^W+{}^H$ ?

b

Is  $\rightsquigarrow$  symmetric? Is  $\rightsquigarrow$  transitive? DTATTQuestions depend on the board?

c

On  $\mathbf{B} := 4 \times 4$ , describe all pairs  $(b, c)$  st.  $b \stackrel{K4}{\rightsquigarrow} c$ . Here, is  $\stackrel{K4}{\rightsquigarrow}$  the same as  $\rightsquigarrow$ ? In  $\mathbb{Z}^{\times D}$ , two cells are **checker-equiv** if, in principle, checker could jump from one to the other. How many checker-equiv-classes are there? How can you

combine checker-equiv and K4 to find  $b \rightarrow c$ ? **d** Generalize everything. E.g, a **coal**(escence) moves  $\bullet\bullet\bullet$  to  $\circ\circ\circ$ . The K4 jump-invariant is also coal-invariant! On  $4 \times 4$ , what is  $\stackrel{\text{coal}}{\rightsquigarrow}$

Triangle boards? Center-of-mass arguments?

**X4:** Pick a non-trivial problem from chapters 16–22, and solve it elegantly.

**X1:** \_\_\_\_\_ 120pts

**X2:** \_\_\_\_\_ 155pts

**X3:** \_\_\_\_\_ 165pts

**X4:** \_\_\_\_\_ 155pts

**Total:** \_\_\_\_\_ 595pts

**HONOR CODE:** *"I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)."*      *Name/Signature/Ord*

Ord:

.....

Ord:

.....

Ord:

.....

Filename: Classwork/Algebra/Alg2005t/x-home.Alg2005t.  
latex  
As of: Monday 31Aug2015. Typeset: 6May2016 at 13:54.