



**Please.** The order of your hand-in should be: PROBLEM SHEET (this side up), TYPOGRAPHY SHEET (if any), followed by the write-up(s) to each essay question. **The staple should be vertical!** Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than  $.9797\dots$ . Use “ $f(x)$  notation” when writing fncs; in particular, for trig and log fncs. E.g. write “ $\sin(x)$ ” rather than the horrible  $\sin x$  or  $[\sin x]$ . Write expressions unambiguously e.g., “ $1/a + b$ ” should be bracketed either  $[1/a] + b$  or  $1/[a + b]$ . (Be careful with **negative** signs!)

**X1:** Show no work.

a,b

Consider a (solid) ball of radius 1, centered at the origin. Now discard the bottom half, leaving only the hemiball in the half-space  $z \geq 0$ . Fix a number  $r \in (0, 1)$  and drill a hole, of radius  $r$ , in the hemiball; the axis-of-symmetry of the hole is the axis-of-symmetry of the hemiball. Let  $H$  denote the resulting “drilled hemiball”. Let  $\bar{z}(r)$  denote the distance of the *centroid* of  $H$  from the origin (thus  $\bar{z}(r)$  is  $z$ -coord of the centroid of  $H$ ). From **geometry alone**, what do expect for these?:

$$\lim_{r \searrow 0} \bar{z}(r) = \dots ; \lim_{r \nearrow 1} \bar{z}(r) = \dots . \text{ Computing,}$$

$$\bar{z}(r) = \dots .$$

**c** Let  $\mathbf{G}(x, y, z) := x^2\hat{\mathbf{i}} + xz\hat{\mathbf{j}} + y^2z\hat{\mathbf{k}}$  and let  $\mathbf{H} := \text{Curl}_{\mathbf{G}}$ . Easily compute the following.

$$\mathbf{H} = \dots ;$$

$$\text{Curl}_{\mathbf{H}} = \dots ;$$

$$\text{Div}_{\mathbf{H}} = \dots .$$

**d,e** Let  $C$  be the (oriented) arc of the unit circle which goes from the point  $\frac{1}{2}[\hat{\mathbf{i}} + \sqrt{3}\hat{\mathbf{j}}]$  counterclockwise to the point  $-\hat{\mathbf{i}}$ . Compute the *path integral* of the vector field  $\mathbf{G}(x, y) := xy^5\hat{\mathbf{i}} + y\hat{\mathbf{j}}$ .

$$\int_C \langle \mathbf{G}, d\text{Len} \rangle = \dots .$$

**f** Let  $\mathbf{H}(x, y) := [2xy^3 + \cos(2x)]\hat{\mathbf{i}} + [e^{3y} + 3x^2y^2]\hat{\mathbf{j}}$  be a vector field. Either compute a potential function  $f: \mathbb{R}^2 \rightarrow \mathbb{R}$  so that  $\nabla(f) = \mathbf{H}$  or write “DNE” to indicate that  $\mathbf{H}$  is not conservative.

$$f(x, y) = \dots .$$

g,h

Let  $R$  be the region consisting of points  $(x, y)$  in the first quadrant such that  $x^4 + y^2 \leq 1$ . By any means (hint, hint) compute the work done by the force-field  $\mathbf{F}(x, y) := x\hat{\mathbf{i}} + x^4y\hat{\mathbf{j}}$  in moving an object counterclockwise once around the boundary of  $R$ .

Work=

i,j

Compute the following iterated integral.

$$\int_0^{\pi/8} \int_0^{\cos(\theta)} r^4 \sin(2\theta) dx[r] dx[\theta] = \dots .$$

k

A delicious doughnut (DN) just fits into a box of dimensions 4in by 4in by 1in. Using Thm of Pappus, how many cubic inches of delicious dough are needed to make this DN? Vol=  $\dots \text{ in}^3$

How many in<sup>2</sup> of glaze (yuck!) are needed to frost the doughnut? SurAr=  $\dots \text{ in}^2$

**X2:** ESSAY QUESTION: In  $\mathbb{R}^3$ , let  $\mathbf{Y}_1$  and  $\mathbf{Y}_2$  be (infinite) cylinders, each of radius 1, whose axes intersect; let  $\theta \in (0, \frac{\pi}{2}]$  denote the angle between the axes. The intersection  $\mathbf{Y}_1 \cap \mathbf{Y}_2$  comprises two closed curves; call the shorter curve  $S$  and the longer curve  $L$ . [Well... in the  $\theta = \frac{\pi}{2}$  case, the curves are congruent.] Curves  $S$  and  $L$  intersect in two points; call one of these points  $P$ .

**a**

For several values of  $\theta$ , draw LARGE carefully labeled and shaded pictures of  $\mathbf{Y}_1, \mathbf{Y}_2, S, L, P$ . Certain cross-sections of the cylinders are useful; draw them too. From the **geometry alone**, without computation, predict how  $\kappa_S(\theta)$  and  $\kappa_L(\theta)$  [see below] will vary with  $\theta$ . What should happen at  $\theta = \frac{\pi}{2}$ ? ... as  $\theta \searrow 0$ ? Etc.? Why? Explain!

**b**

Give a rigorous proof that  $S$  is a *planar* curve. [This is NOT true if the axes miss each other, or if the cylinders have different radii. So your argument will *perforce* use these facts in some crucial way. (Think Symmetry.)]

**c**

In an appropriate coordinate system, give an equation for  $S$ . Ditto for  $L$ . Precisely what kind of curves are these, and *HDYKnow*?

**d**

At  $P$ , compute the **curvatures**

$$\kappa_S(\theta) = \text{.....}$$

$$\text{and } \kappa_L(\theta) = \text{.....}$$

of the two curves, *explaining and justifying* each step. You may quote, without proof, results from class, from the Teaching Page, and from handouts.

 **MAGIC!** Suddenly cylinders  $\mathbf{Y}_1$  and  $\mathbf{Y}_2$  become **solid** cylinders; let  $\mathbf{S} = \mathbf{S}(\theta)$  denote their solid of intersection. Compute its *surface area*:

$$\text{SurAr}(\mathbf{S}(\theta)) = \text{.....}$$

*Explain* all the ideas on how you computed this. [Hint: There is a way to do this with very very little computation, because the surface is made up of pieces of a cylinder.]

**Bonus:** Invent, create, write a *clever* –preferably *funny*– mathematics story, perhaps using some real mathematics that we have learned. As always, use grammatical English that would make Shakespeare weep with joy and admiration.

**Notes and Hints.** The Marston Science Library has mathematical dictionaries. Our Teaching Page has useful handouts. In parts of X1 or X2, polar coordinates may be useful. In X2, I suggest first *completely* understanding the  $\theta = \frac{\pi}{2}$  case.

[End of X-Home](#)

**X1:** \_\_\_\_\_ 330pts

**X2:** \_\_\_\_\_ 225pts

**Bonus:** \_\_\_\_\_ 25pts

**Total:** \_\_\_\_\_ 555pts

**HONOR CODE:** *"I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)."* **Name/Signature/Ord**

Ord:

\_\_\_\_\_

Ord:

\_\_\_\_\_

Ord:

\_\_\_\_\_