

NT-Cryptography
MAT4930 7554

Home-X

Prof. JLF King
Touch: 2Jul2018

This take-home is due at the **BoC of Mon, 21Mar2011**. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed. Fill-in all blanks on this sheet! (*Handwriting is fine; don't bother to type*).

For essay questions (X1) and (X2), carefully typeset (TeX/LaTeX is recommended) a **double-or-triple-spaced** essay solving the problem. **Do not** re-state the problem! Please start each essay on a new sheet of paper.

X1: We work modulo $M := 191$, which is prime. Its multiplicative-group, Γ , has $\varphi(191)=190$ elements. This Γ is cyclic, and $G := 19$ is a generator, i.e $\text{Ord}_\Gamma(G) = 190$.

Use BSGS (“Baby-Step Giant-Step”) to compute the unique exponent E in $[0..190]$ for which

$$19^E \equiv_M 23.$$

a Draw a large circle-picture and label the entries of the bottom-right patch by $G^0 \equiv 1$, $G^1 \equiv 19$, $G^2 \equiv 170$, ... up to $G^{12} \equiv ??$, putting in the actual values. [Optional: Produce a sorted version of this list, for binary searching.]

b Draw in the other patches; how many are there? By how much does our last patch overlap our initial patch?

c What is the value of the multiplier, call it U , which carries us back to the previous patch? Now use BSGS to compute the above E . Which patch was it in?

d Use repeated-squaring to check that your value for E is correct.

X2: **i** Use Pollard- ρ to find a non-trivial factor of $M := 59749$, using seed $s_0 := 7$ and map $f(x) := 1+x^2$. Make a nice table, labeled

Time	Tortoise	Hare	$s_{2k} - s_k$	$\text{Gcd}(??)$
------	----------	------	----------------	------------------

—but replace the “??” with the correct expression. You found non-trivial factor $E :=$.

The hare Hits into the tortoise at time $H :=$.

Repeat, showing the table for $s_0 := 24$. Experiment with different seeds; what is the typical running time? How is it related to the factor you find?

ii A seed s determines a **tail**; the smallest natnum T for which there is a time $n > T$ with $f^n(s) = f^T(s)$. The

smallest such n is $T+L$ where L is the **period**. Derive (picture+reasoning) a formula for the hitting time $H(T, L)$. [Hint: $H(0, L) = L$.]

iii Produce a Floyd-done-twice algorithm that computes both T and L . The number, N , of f -evaluations is upper-bounded by some small constant times $T+L$ (=arclength of ρ). How small can you get $N(T, L)$? [Hint: $N(0, L) = 3L$.]

X3: Show no work.

a Let $f(x) := x^2 - 9x + 14$, and $N := 30425 \stackrel{\text{note}}{=} p \cdot 25$, where $p := 1217$ is prime. The **number** of solns $x \in [0..N)$ to $f(x) \equiv_N 0$ is $K =$. A number $Z \in [0..N)$ such that $f(Z) \neq 0$ yet $f(Z) \equiv_N 0$ is

[Hint: Find solns mod- p and mod-25, then use CRT.]

b Note $p := 137$ is prime. The (multiplicative) order of 2 mod 137 is

[Hint: $p - 1$ has very few prime factors.]

End of Home-X

X1:	_____	135pts
X2:	_____	135pts
Poorly stapled, or missing names or team number:	_____	45pts
	_____	-15pts
Not double-spaced:	_____	-15pts

Total: _____ 315pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague). Name/Signature/Ord*

Ord: _____

Ord: _____

Ord: _____