

Staple!

Calc 3
MAC2313Optional Project-X
Prof. JLF King
Touch: 4Aug2016

OYOP: Your 2 essay(s) must be TYPESET, and Double or Triple spaced. Use the *Print/Revise* cycle to produce good, well thought out, essays. Start each essay on a *new* sheet of paper.

Due: **By noon, on Friday, 07Dec2012**, slide completely under my office door. Then please email me.

X1: For $m \in [1, \infty)$, let Γ_m denote the equi-angular spiral which crosses the x -axis at $Q_1 := (1, 0)$ and, one wrap later, at $Q_m := (m, 0)$, in *cartesian coords*. (When $m=1$, the “spiral” degenerates into a circle.) Let $\mathbf{P}_m = (\alpha_m, \beta_m)$ be the *cartesian coordinate* parametrization of Γ_m st. $\mathbf{P}_m(0) = Q_1$, $\mathbf{P}_m(2\pi) = Q_m$ and $\mathbf{P}_m(t)$ wraps once whenever t increases by 2π . [After the second wrap, the spiral hits the x -axis at $(m^2, 0)$.]

So $\alpha_m(t) =$
.....

& $\beta_m(t) =$
.....

a

Drawing Good Pictures, compute that $L_m := \text{Length}(\Gamma_m)$ is
 $L_m =$

Total length of Γ_m going in to the origin from Q_1 , is
 $T_m =$
.....

[Hint: As $m \searrow 1$, geometrically you expect $L_m \rightarrow ??$ and $T_m \rightarrow ??$; **do they?** (Think L'Hôpital.) As $m \nearrow \infty$, geometry tells you to expect $T_m \rightarrow ??$, and L_m to be asymptotic to $??$. **Are they?**]

b

Showing the interesting steps, compute from $\mathbf{F}()$ the arclength parametrization $\mathbf{A}(s) = (x(s), y(s))$, of the spiral, satisfying that $\mathbf{A}(0) = \mathbf{F}(0)$. Indeed,

$x(s) =$
.....

c

Create some *interesting* mathematical problem concerning these spirals. Elegantly solve the problem that you created, drawing nice pictures. *Show off!*

Ord: _____

X2: For angles $\frac{\pi}{2} \geq \beta > \alpha \geq 0$, let \mathbf{s} be the arc of the radius=1ft circle going from angle α to β . Let $f(\alpha, \beta) := \mathcal{V} + \mathcal{H}$, where \mathcal{V} is the (area of the) region lying below \mathbf{s} and above the x -axis, and \mathcal{H} is the region horizontally between \mathbf{s} and the y -axis. Integrating,

$f(\alpha, \beta) =$ ft². [Hint: Slice \mathcal{V} vertically and \mathcal{H} hor., integrating w.r.t θ . What amazing thing happens?]

End of Optional Project-X

X1: _____ 155pts

X2: _____ 105pts

Total: _____ 260pts

HONOR CODE: *“I have neither requested nor received help on this exam other than from my professor (or his colleague).”*
Name/Signature/Ord
.....

Ord: _____