

Sets and Logic
MHF3202 7860

Genuine-Home-X

Prof. JLF King
Touch: 21Feb2017

Due **BoC, Monday, 16Mar2015**, with *all team-members present*. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

This sheet is “Page $1/N$ ”, and you’ve labeled the rest as “Page $2/N$ ”, …, “Page N/N ”. Fill-in [large handwriting] *on this problem-sheet* all of your blanks.

X1: Henceforth, show no work. Simply fill-in each blank on the problem-sheet.

a Define fncs $G, P: [1..12] \rightarrow \mathbb{Z}$, where $G(n)$ is the number of letters in the n^{th} Gregorian month [so $G(2) = 8$; the 2nd month “February” has 8 letters], and $P(n) := 13 - n$.

The set of posints k with $G^{\circ k}(1) = G^{\circ k}(2)$

is

Let $f := P \circ G$. Then $f^{\circ 2}(11) =$

Statement “ $P \circ G = G \circ P$ ” is circle T F

b $\forall x, z \in \mathbb{Z}$ with $x < z$, $\exists y \in \mathbb{Z}$ st.: $x < y < z$. T F
 $\forall x, z \in \mathbb{Q}$ with $x \neq z$, $\exists y \in \mathbb{R}$ st.: $x < y < z$. T F

For all sets Ω , there exists a fnc $f: \mathbb{R} \rightarrow \Omega$. T F

c [With $\mathcal{P}()$ the powerset operator, let $S := \text{3-stooges}$.] Then $|\mathcal{P}(S)| =$ and $|\mathcal{P}(\mathcal{P}(S))| =$

OYOP: Your 2 essay(s) must be TYPESET, and Double or Triple spaced. Use the Print/Revise \circ cycle to produce good, well thought out, essays. Start each essay on a **new** sheet of paper. Do not restate the problem; just solve it.

On the essays: I ask that you do more than what I ask you to do.

X2: For all natnums $k < n$, prove that $H_k \perp H_n$, where

$$H_k := 1 + 6^{[2^k]}.$$

[Hint: For each natnum m , define $G_m := -1 + 6^{[2^m]}$. Prove a divisibility relation among the H s and the G s, by induction. Then a common divisor of H_k and H_n must...]

Also, produce an index $\ell \in \mathbb{N}$ st. H_ℓ is not prime.

X3: In our Velleman text, solve problem #12^{P277}. Let \mathbf{E}_n be the equilateral triangle with side-length 2^n . This \mathbf{E}_n

can be tiled in an obvious way by 4^n many little-triangles [copies of \mathbf{E}_0]; see picture P.277. The “*punctured* \mathbf{E}_n ”, written $\widetilde{\mathbf{E}}_n$, has its topmost copy of \mathbf{E}_0 removed.

A **trapezoid** D comprises three copies of \mathbf{E}_0 glued together in a row, rightside-up, upside-down, rightside-up [see picture P.277].

PROVE: For each n , board $\widetilde{\mathbf{E}}_n$ admits a trapezoid-tiling. Call such, a “*zoid-tiling* of $\widetilde{\mathbf{E}}_n$ ”.

In case you want to generalize, let \mathbf{B}_k be the equilateral triangle of sidelength k ; so \mathbf{E}_n is \mathbf{B}_{2^n} . Triangle \mathbf{B}_k comprises k^2 little-triangles. Two nice extra credit things to think-about/prove: For what values k does \mathbf{B}_k admit a zoid-tiling? For which k does $\widetilde{\mathbf{B}}_k$ admit a zoid-tiling?

Another possible direction: Generalize the Lmino tiling to three-dimensions, tiling the punctured $2^n \times 2^n \times 2^n$ board. What plays the role of the tile?

End of Genuine-Home-X

X1: 80pts

X2: 105pts

X3: 95pts

Ouch!, scratch work
handed-in; OR

Poorly stapled. : -20pts

Total: 280pts

HONOR CODE: “I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).” *Name/Signature/Ord*

Ord:

.....

Ord:

.....

Ord:

.....