

Sets and Logic
MHF3202 8768

Home-X

Prof. JLF King
Touch: 4Aug2016

Due **BoC, Monday, 24Mar2014**, with *all team-members present*. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

X1: Henceforth, show no work. Simply fill-in each blank on the problem-sheet.

a Define $G:[1..12] \circlearrowright$ where $G(n)$ is the number of letters in the n^{th} Gregorian month. So $G(2) = 8$, since the 2nd month is “February”. The only fixed-point of G is . The set of posints k where $G^{\circ k}(12) = G^{\circ k}(7)$ is .

.....

b We consider binrels on $\Omega := \text{Stooges} := \{M, L, C\}$. There are **Anti-reflexive** binrels, and **Reflexive** binrels,

..... and **Symmetric** binrels. The

..... number of **strict total-orders** is .

c Suppose \mathbf{R} is a binrel on set Ω . Then statement “Relation $\mathbf{R} \circ \mathbf{R}^{-1}$ equals $\mathbf{R}^{-1} \circ \mathbf{R}$ ” is T F

OYOP: Your 2 essay(s) must be TYPESET, and Double or Triple spaced. Use the Print/Revise \circlearrowright cycle to produce good, well thought out, essays. Start each essay on a **new** sheet of paper.

Do not restate the problem; just solve it.

X2: Note $f(n) := \frac{1}{2} \cdot [15^n + 19^n]$ is an integer. Prove, for each odd $n \geq 3$, that $f(n)$ is composite. [Hint: Look at $f(n) \bmod$ something.]

[Are all the hypotheses necessary, or can some be weakened?]

X3: **i** Over a 29 day month, SeLoidian Bubba posts at least one soln per day, for a total of 45 solns. PROVE:

There is a period of consecutive days over which he posted exactly $g := 13$ solutions.

[g for “Guaranteed”.] NOTE: In your proof, let s_n denote the number of solns posted that month by the end of day n . By hyp., then,

$$1 \leq s_1 < s_2 < \dots < s_{29} = 45.$$

Let $t_n := 13 + s_n$. Using this notation, write a complete, rigorous proof, proving any lemmas you need/want. [Hint: You may find it easier to first show that $g=12$ is guaranteed. Then you'll see how to show that $g=13$ is guaranteed.]

ii Generalize: Replace 29 by D , replace 45 by P ; we now consider posints with $D < P$. Give a formula for the *largest* value, call it $\Gamma(D, P)$, for which your proof guarantees the values $g = 1, 2, 3, \dots, \Gamma(D, P)$.

iii For fixed D and P , let $\mathcal{M}(D, P)$ be the *set* of guaranteed posints g . What can you tell me about the structure of $\mathcal{M}(D, P)$? Conjectures? Proofs? Computer experiments? (I don't know the structure. What can you teach me?)

End of Home-X

X1: _____ 85pts

X2: _____ 75pts

X3: _____ 105pts

Ouch!, scratch work handed-in; OR Poorly stapled. : _____ -20pts

Total: _____ 265pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague). Name/Signature/Ord*

Ord: _____

Ord: _____

Ord: _____

.....