

Staple!

Sets and Logic
MHF3202 8768

Class-X

Prof. JLF King
6Sep2015

X4: _____ 70pts

X5: _____ 35pts

X6: _____ 55pts

Total: _____ 160pts

X4: Short answer. Show no work.Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a Sequence $\vec{L} := (L_n)_{n=0}^{\infty}$ is defined by $L_0 := 3$, $L_1 := 11$, and $\forall n \in \mathbb{N}: L_{n+2} = -L_{n+1} + 6L_n$. This implies $\forall k \in \mathbb{N}: L_k = [P \cdot \alpha^k + Q \cdot \beta^k]$, for real numbers $\alpha = \dots > \beta = \dots$, $P = \dots$, $Q = \dots$.

b The physics lab has atomic *zinc, tin, silver and gold*. I'm allowed to take 5 atoms, so I have [expressed as single integer] many possibilities.

c The coeff of $x^7 y^{12}$ in $[5x + y^3 + 1]^{30}$ is _____.

OYOP: *In grammatical English sentences, write your essays on every third line (usually), so that I can easily write between the lines. Do not restate the question.* Start each essay on a new sheet-of-paper. Put ordinal also on back of last page, **large**, right-side-up.

X5: An **Lmino** (pron. “ell-mino”) comprises three squares in an “L” shape (all four orientations are allowed). For natnum N , let \mathbf{B}_N denote the $3 \times N$ board: I.e.,

is the \mathbf{B}_5 board. Prove:

Theorem: *When N is odd, then board \mathbf{B}_N is not Lmino-tilable.*

You will likely want to first *state* and *prove* a Lemma. Now use appropriate induction on N to prove the thm. Also: *Illustrate your proof* with (probably several) large, labeled pictures.

X6:

Over a 29 day month, SeLoidian Bubba posts at least one soln per day, for a total of 45 solns. PROVE:

There is a period of consecutive days over which he posted exactly 12 solutions.

NOTE: In your proof, let s_n denote the number of solns posted that month by the end of day n . By hyp., then,

$$1 \leq s_1 < s_2 < \dots < s_{29} = 45.$$

Let $t_n := 12 + s_n$. Using this notation, write a complete, rigorous proof, proving any lemmas you need/want.