

Read! the Notation! Use $C_r := \text{Sph}_r(0)$.

The expression $\text{FUNCTION} = u + iv$ means that u is the real-part of FUNCTION , and v is the imaginary-part.

$\text{Res}(\beta, \mathbf{q})$ is the residue of *function* $\beta()$ at the point \mathbf{q} . Please simplify answers, when possible.

X1: Short answer. Show no work.

20 **a** Which action *loses pts?* **Writing-in-sentences**

Writing-t-different-from-+ *tiny - tiny - writing* **Writing-LARGE**

10 25 **b** Fnc $\alpha(z) := \frac{\cosh(7z)}{[z-2]^2 z^2}$ has a $z=0$ pole of order
And $\text{Res}(\alpha, 0) =$

25 **c** Let $J := \int_{C_2} z^4 \sin\left(\frac{7}{z}\right) dz$. So $J =$

10 25 **d** Defining $\vec{a} = (a_0, a_1, \dots)$ by $\cos(2z) = \sum_{n=0}^{\infty} a_n z^n$, coefficient $a_4 =$ Let

$$\sum_{n=0}^{\infty} r_n z^n = \frac{1}{\cos(2z)}$$

be the reciprocal PS. Then $r_4 =$

[Hint: You can compute the reciprocal as we did in class.]

X2: Short answer. Show no work.

Let $f(z) := z^4 + 5z^2 + 4$. Reciprocal $H(z) := 1/f(z)$ has, in the upper half-plane, two poles \mathbf{p} and \mathbf{q} , where \mathbf{p} lies closer to the origin than \mathbf{q} .

So $\text{Res}(H, \mathbf{p}) =$ and $\text{Res}(H, \mathbf{q}) =$

Our D-contour technique applies to H .

Thus $J := \int_{-\infty}^{+\infty} \frac{1}{z^4 + 5z^2 + 4} dx =$

OYOP: In grammatical English **sentences**, write your essay on every 2nd line (usually), so I can easily write between the lines.

X3: Precisely state the Gauss Mean-value thm, with all the hypotheses. State it as a *formal* theorem.

Carefully prove the Gauss MVT, using the CIF.

X4: Consider an entire fnc $g = u + iv$ whose imaginary-part, v is bounded, e.g, $|v(z)| \leq 5$ for all z . Prove that g is constant. [Hint: Somehow prove that g is bounded, then apply SomebodyOrOther's thm. (Who's thm? State the theorem formally.) You may want to construct an auxiliary function from g .]

X1: _____ 115pts

X2: _____ 60pts

X3: _____ 55pts

X4: _____ 40pts

Total: _____ 270pts

Please PRINT your **name** and **ordinal**. Ta:

Ord: _____

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature: _____