

Note. All variables range over the integers, unless otherwise specified. The exam is due *5PM on Sunday, 30Apr2000, slid under my office door*, room LIT402.

X1: Please FITBlank: Show no work (no partial credit).

a $\varphi(40) = \boxed{\dots}$. Let \mathcal{C} be the set of mod-40 symm-residue classes which are *odd* and *coprime to 10*. Let $\mathcal{N} \subset \mathcal{C}$ comprise those residue classes D such that $\left(\frac{-10}{D}\right) = -1$. (That is negative ten, Folks.)

Then $\mathcal{N} = \left\{ \boxed{\dots} \right\}$.

b Let $f(x) := x^2 - 2x + 11$ and let $M_1 := 7$, $M_2 := 49$ and $M_3 := 49 \cdot 2 = 98$. Compute a solution s_j to congruence

$$f(s_j) \equiv_{M_j} 0, \quad \text{where } \frac{-1}{2}M_j < s_j \leq \frac{1}{2}M_j.$$

$$s_1 = \boxed{\dots}; \quad s_2 = \boxed{\dots}; \quad s_3 = \boxed{\dots}.$$

c If $7^e \parallel [2000!]$, then $e = \boxed{\dots}$.

Note. For the following problem please carefully write up your solution on separate sheets of paper. Show all work –there *is* partial credit.

X2: Prove *Beatty's Theorem*, which is P.186#23.

1: Beatty's Theorem. Suppose α and β are positive irrational reals such that

$$\frac{1}{\alpha} + \frac{1}{\beta} = 1.$$

Then the following two sets of integers are *disjoint*,

$$A := \{ \lfloor n\alpha \rfloor \mid n \in \mathbb{Z}_+ \}, \quad B := \{ \lfloor n\beta \rfloor \mid n \in \mathbb{Z}_+ \},$$

and their union is \mathbb{Z}_+ . That is, (A, B) is a partition of the posints. \diamond

[Hint: For each posint K , how big is the set $\{n \mid n\alpha < K\}$? Now do the same for β , and add the results; what integer is this sum? (Can you write this sum *ITForm* *Formula*(K)?) How does this sum change when you increment K to become $K + 1$?]

X3: Please write a detailed solution to P.195#18. [Note You may use the Möbius inversion formula without proof, if you wish.]

X4: Create your own number theory problem, then solve it. Make this a “prove this” problem, rather than a “compute this” problem.

Bonus: Solve problem P.195#26 (having looked at #25). Note that the NZM “ $\Phi_n(x)$ ” refers to a *polynomial*. It is related to, but is not the same as, our use of “ Φ ” in class.

X1:	<u> </u> <u> </u> <u> </u>	110pts
X2:	<u> </u> <u> </u> <u> </u>	120pts
X3:	<u> </u> <u> </u> <u> </u>	110pts
X4:	<u> </u> <u> </u> <u> </u>	110pts
Bonus:	<u> </u> <u> </u>	30pts
Total:	<u> </u> <u> </u> <u> </u>	450pts

Please PRINT your **name** and **ordinal**. Ta:

..... Ord:

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature:

Filename: Classwork/NumberThy/NT2000g/x-c1.NT2000g.latex
 As of: Wednesday 03Aug2016. Typeset: 3Aug2016 at 17:44.