

Note. Write unambiguously e.g., $1/a + b$ should be bracketed either $[1/a] + b$ or $1/[a + b]$, as appropriate. (Be careful with negative signs!)

Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g, write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

X1: Short answer. Show no work.

10 a When possible, Prof. King thinks it is beneficial to estimate an answer, via an independent method, before computing.

T F .

10 10 10 b Fncs $x(t)$ and $y(t)$ satisfy this system of DEs,

$$\begin{aligned} x' + x - 3y &= 0, \\ y' + 6x - 8y &= 0. \end{aligned}$$

It can be written as $\mathbf{Y}' = \mathbf{M} \cdot \mathbf{Y}$,

where $\mathbf{Y} := \begin{bmatrix} x \\ y \end{bmatrix}$ and \mathbf{M} is matrix

You may write a $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ matrix as $[a, b; c, d]$.

Characteristic poly of \mathbf{M} is $\varphi_{\mathbf{M}}(z) =$

A soln has $x(t)$ a linear combination of $e^{\alpha t}$ and $e^{\beta t}$ for numbers $\alpha =$ and $\beta =$, where $\alpha \leq \beta$.

5 10 10 c Gamma fnc: $\Gamma(7) =$ and $\Gamma(\frac{7}{2}) =$

For all real $x > 1$, our $\Gamma()$ function satisfies recurrence relation

$\Gamma(x) =$

10 10 d $[x^3 \circledast x^2] =$. $[x^K \circledast x^N] =$

30 e Suppose $y(0) = 2$, $y'(0) = 3$, $y''(0) = 5$. Then $\mathcal{L}(y^{(3)} + 2y')(s)$ equals $[[p(s) \cdot \widehat{y}(s)] + q(s)]$ for polynomials

$$p(s) = \dots$$

$$\text{and } q(s) = \dots$$

30 f Let $H(t) := \int_0^t \cos(2 \cdot [t - w]) \cdot e^{5w} dw$. Its Laplace

transform is $\widehat{H}(s) = \frac{Q(s)}{R(s)}$, where polynomials

$$Q(s) = \dots \quad R(s) = \dots$$

have no common factor.

[Hint: It is unnecessary to compute the integral. A polynomial may be written as a product; you do not need to multiply out.]

X2: “I have neither requested nor received help on this exam other than from my professor.”

X1: _____ 145pts

X2: _____ 5pts

Total: _____ 150pts