

Staple!

Differential Eqns
MAP2302

X-Class

Prof. JLF King
Wedn, 26Feb2020

Hi. Write expressions unambiguously e.g., “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with negative signs!)

Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g., write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

X1: Show no work.

a The visual representation of \mathbb{C} is sometimes called “the ? plane”, where ? is [Circle]: **Unreal** **Higher** **Snakes-on-a** **Argand** **Krypton** **Radon** **Xenon** **Euler** **Gauss** **Please-x** **y-com** **Air** **Sea** **De** **Rain-in-Spain-stays-mainly-on-the**.

b A [frictionless] 2-meter long pendulum swings on planet with surface acceleration $10 \frac{\text{m}}{\text{sec}^2}$. The pendulum has small deflection, so its DE can be approximated by a harmonic [oscillating spring] DE. The spring’s period is sec .

When the pendulum’s max-deflection [from vertical] is $\pm 2^\circ$, the pendulum’s period is **circle**

longer-than equal-to shorter-than
the spring’s period.

c A *critically-damped* unforced spring has DE

*: $My'' + By' + Ky = 0 \frac{\text{kg}\cdot\text{m}}{\text{sec}^2}$, where
 $M := 3\text{kg}$, and the Hooke’s constant is $K := 75 \frac{\text{kg}}{\text{sec}^2}$.

The damping constant $B =$

The *general soln* to critically-damped (*) is

$$y(t) = \left[\alpha \cdot \text{_____} + \beta \cdot \text{_____} \right] \text{m.}$$

Here, $\alpha, \beta \in \mathbb{R}$, dimensionless. [The above blanks have numbers & **units** in various places; the bracketed quantity is dimensionless. Is $\exp(?)$ is more convenient than $e^?$ notation?] The **specific** soln with $y(0\text{sec}) = 2\text{m}$ and $y'(0\text{sec}) = 0 \frac{\text{m}}{\text{sec}}$ has

$$\alpha = \text{_____}, \beta = \text{_____}$$

d

Bacteria with birth-multiplier **B** are in a petri dish with carrying capacity **C**. The population, $p(t)$, satisfies the Logistic DE [write $p(t)$ rather than p , etc.] which is

For *Skyleria* bacteria, $B = \frac{1/5}{\text{min}}$. This petri dish has $C=16\text{oz}$, with initial population $p_0 = 2\text{oz}$. The time when *Skyleria* has reached half the carrying capacity is $\text{min} \approx \text{decimal} \text{ min.}$

[NB: You may use $\exp()$ and $\log()$ to express your answer.]

OYOP: *In grammatical English **SENTENCES**, write your essay on every 2nd line (usually), so I can easily write between the lines.*

X2: On a $10 \frac{\text{m}}{\text{sec}^2}$ planet, a hanging cable has vertex [i.e., lowest point] Tension=Horiz.Tension equal to

$$T := 5\text{N}. \quad (\text{Newton} = \text{N} = [\text{kg}\cdot\text{m}]/[\text{sec}^2].)$$

The cable’s mass-density is $2 \frac{\text{kg}}{\text{m}}$. Use $\tau(x)$ for the tension in the cable above horiz.-position x , with $\tau_{\text{Ver}}(x)$ and $\tau_{\text{Hor}}(x)$ its vert/horiz components.

With **SENTENCES** and **LARGE** labeled diagrams, derive the 2nd-order DE for the hanging cable $h=h(x)$, where $h'(0\text{m}) = 0$. [Do not solve the DE; simply carefully derive the DE.]

End of X-Class

X1: _____ 135pts

X2: _____ 85pts

Total: _____ 220pts

Please PRINT your name and ordinal. Ta:

Ord: _____

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor.*

Signature: _____

Ord: _____