

X1: Show no work.

a A multivariate polynomial, where each monomial has the same degree, is **circle**
 monogamous atrocious gregarious
 monic expialadocious homogeneous
 manic unitary Unitarian utilitarian

b DE $h'' - 2h' + 10h = 0$, has fund.-set of solns $\{e^{\alpha t}, e^{\beta t}\}$, for complex numbers $\alpha =$ and $\beta =$

Alternatively, we can write our fund.-set as

$$e^{Jt} \cdot \cos(Kt) \quad \text{and} \quad e^{Jt} \cdot \sin(Kt),$$

for *real* numbers $J =$ and $K =$

c A soln to $[f'' - 3f'](x) = 14 - 6x$ is **polynomial** $f(x) =$ Using parameters α and β , then, the *general* solution to $[h'' - 3h'](x) = 14 - 6x$ is

$$h_{\alpha, \beta}(x) =$$

And the h with $h(0) = 0$ and $h'(0) = 0$

is $h(x) =$

d DE $[(2x^2 + y) \cdot \frac{dy}{dx}] - 2xy = 0$ is not, alas, *exact*. Happily, multiplying both sides by (non-constant) fnc $V(y) =$ gives a *new* DE which is exact.

Solving the exact-DE, every soln $y = y(x)$ satisfies $F(x, y(x)) = \alpha$ for some constant α , where

$$F(x, y) =$$

e [Here, $t > 0$.] Acting on $y = y(t)$, DiffOp $E(y) := t^2 y'' - t y' + y$ is linear. Fnc $Y(t) := t$ satisfies $E(Y) = 0$. Then ROO gives us a $Z(t) =$

satisfying $E(Z) = 0$ and Z is L.I of Y .

ROO also produces a function

X2: Show no work.

A tank initially holds 60gal of $2 \frac{\text{lb}}{\text{gal}}$ brine. Pipe-1 feeds the tank, at rate $4 \frac{\text{gal}}{\text{min}}$, with brine of time-varying salinity $5^t \frac{\text{lb}}{\text{gal}}$. Pipe-2 feeds the tank at $1 \frac{\text{gal}}{\text{min}}$, brine of salinity $t^3 \frac{\text{lb}}{\text{gal}}$. The tank discharges brine at rate $9 \frac{\text{gal}}{\text{min}}$. Until the tank empties, the tank holds $W(t) =$ gal; it empties in min.

Finally, $y(t)$, the number of pounds of salt in the tank at time t , satisfies FOLDE $\frac{dy}{dt} + F(t) \cdot y = H(t)$, where $F(t) =$

$$\text{and } H(t) =$$

End of X-Class

X1: _____ 175pts

X2: _____ 60pts

Total: _____ 235pts

Please PRINT your **name** and **ordinal**. Ta:

Ord:

..... **HONOR CODE:** "I have neither requested nor received help on this exam other than from my professor."

Signature: