

Staple!

Sets and Logic
MHF3202 8768

Class-X

Prof. JLF King
Touch: 10Dec2015

X4: _____ 90pts

X5: _____ 45pts

X4: Short answer. Show no work.

Please write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

Total: _____ 135pts**a** For $Y := \{1, 2, 3, 4\}$, consider $f: Y \rightarrow \mathcal{P}(Y)$ by

$$\begin{aligned}f(1) &:= \{3, 4\}, & f(2) &:= Y, \\f(3) &:= \emptyset, & f(4) &:= \{1, 4\}.\end{aligned}$$

The set $B := \{x \in Y \mid f(x) \not\ni x\}$ is $\{ \dots \}$.**b** An explicit bijection $\psi: \mathbb{Z} \leftrightarrow \mathbb{N}$ is this:If $n \geq 0$, then $\psi(n) := \lfloor \dots \rfloor$.If $n < 0$, then $\psi(n) := \lfloor \dots \rfloor$.**c** Define fncs $G, P: [1..12] \rightarrow \mathbb{N}$, where $G(n)$ is the number of letters in the n^{th} Gregorian month [so $G(2) = 8$; the 2nd month “February” has 8 letters], and $P(n) := 13 - n$.The set of posints k with $G^{\circ k}(1) = G^{\circ k}(2)$ is $\lfloor \dots \rfloor$.Let $f := P \circ G$. Then $f^{\circ 2}(11) = \lfloor \dots \rfloor$.**d** On a 5-element set, the number of reflexive symmetric binrels is $\lfloor \dots \rfloor$.On a 3-element set, there are $\lfloor \dots \rfloor$ many equivalence relations.**e** On $\Omega := [1..29] \times [1..29]$, define binary-relation \mathbf{C} by: $(x, \alpha) \mathbf{C} (y, \beta) \text{ IFF } x \cdot \beta \equiv_{30} y \cdot \alpha$. Statement “Relation \mathbf{C} is an equivalence relation” is: $\text{ } T \text{ } F$ OYOP: In grammatical English **sentences**, write your essay on every **third** line (usually), so that I can easily write between the lines. **Do not restate the question.****X5:** For natnum n , define

$$S_n := 3^n + 7^n + 11^n - 6^n.$$

Prove, for odd posints n , that S_n is composite. [Hint: Use modular arithmetic.]