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ABSTRACT. In the class of rank-1 transformations, there is a strong dichotomy. For such a T, the
commutant 1s either ¢rivial, consisting only of the powers of T, or is uncountable. In addition, the
commutant semigroup, C(7T), is in fact a group. As a consequence, the notion of weak isomorphism
between two transformations is equivalent to i1somorphism, if at least one of the transformations is
rank-1. In §2, we show that each proper factor of a rank-1 must be rigid. Hence, neither Ornstein’s
rank-1 mixing nor Chacén transformation, can be a factor of a rank-1.

N.B. In this paper ‘transformation’ shall mean a measure preserving transformation on a Lebesgue probability space.
In general, we assume our measure spaces non-atomic; however the spaces that factors live on may be atomic. A
transformation T is invertible if T—! exists and is a transformation. All sets mentioned are assumed measurable.

§0 Suppose R: [0,1)— [0, 1) is an irrational rotation, that is, the transformation which sends
T+ [ 4 ] (mod 1), for some fixed irrational number a. Now let S be rotation by some amount (3.
Then S commutes with R, i.e, RS = SR. This S can be obtained as a certain limit of powers of
R. By irrationality of a, there exists a sequence of integers s; — co such that [s; - o] (mod 1) = 0,
as 1 = oo. Thus R* — S weakly as 1 — oo. In general, for transformations 5,T;: X — X, we say
that T; — S weakly if, for all A C X,

p(T7H(A) ASTH(A)) =0, asi—0.

This is equivalent to saying that the operators on L%(X) associated with the T; converge weakly
(i.e, on each f € %) to the operator associated with S. The limit, S, need not be invertible, even
if all the T; are invertible. However, it is not hard to show that:

If the T; are invertible and they commute with each
other, then S is invertible and Ti_l — S~ weakly. (0.1)
In particular, S will be invertible if the T; are various powers of a single transformation.

In [4], Andres del Junco states that for rank-1 transformations T possessing a certain special
name structure, each transformation S commuting with 7' is a weak limit of powers of T. He
remarks that it is unknown whether this holds for a general rank-1. Perhaps he was led to this
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2 J.L. King

question by his study of irrational rotations (in [5] he shows them to be rank-1) since one might suspect
that each transformation commuting with a rotation must, itself, be a rotation.

The goal of this paper is to answer del Junco’s question in the affirmative and to derive several
corollaries. Also, we construct two weak-mixing rank-1 transformations which exhibit behavior
showing that the limitations of the corollaries are not vacuous.

Notations and conventions. As is customary, proofs and statements have a tacit ‘a.e’ attached.
Partitions have finitely many atoms. Given a partition P, a P-name is an infinite string of letters
from P. A point = in the space has a doubly infinite T, P-name

T = -ex_qxoriTycc = x5 .
A P-word is a finite string of letters. If W is a word of length h, we index W as
W = WoWy--- Wiy = Wk,

By extension, we use |° to denote the half-open interval of integers [a,b). Use W|; as a synonym
for W;.

We let Id denote the identity transformation on any space under discussion. Agree tolet A = B
or B = A to mean that the expression B defines the symbol A. This is useful for emphasis and
for defining abbreviating terms in the middle of an equation. Also, a statement like ‘(1 —¢)/5 =3’
means to define ¢ so that the equation holds.

Symbols ¢, 4, e and o always represent small quantities in (0,1). ‘¥ large n’ or “Marge n’ means
“dN such that Yn < N”. The symbol [0 ends a proof.

DEFINITION. Given an invertible transformation T: X — X, we use C(T') to denote the commu-
tant of T; the set of transformations S: X — X that commute with T. C(T) is automatically a
semigroup and, should every S € C(T') happen to be invertible, a group —in general, non-Abelian.
If C(T) turns out to be a group then {T"}5L _ _ is normal subgroup, and we can define the quotient

group C(T){T"}>°,. We call this quotient the essential commutant of T and denote it EC(T).
We say that the commutant is trivial if EC(T) = {T"}>_, i.e, EC(T) is the trivial group.

Let WCI(T') denote the weak closure of {T7}2°_. Thus S = WCI(T) if and only if there exists
a sequence (s;)72; such that S = wlim; o, T°"; WCI(T) is an abelian group and subset of C(T).
Let WCI+(T) denote those S obtainable by a sequence s; — +00. We see that

WCI(T) non-trivial = WCI"(T) non-empty
= Id € WCI'(T) (0.2)
«— WCI'(T) = WCI(T).
In a moment we will see that the first implication is reversible for ergodic T' (on non-atomic X).
One says an ergodic T is rigid if Id € WCIT(T). In [7] is the handy observation (later made by
del Junco, independently) that each rigid transformation has uncountable commutant. All one needs

is a sequence of non-identity transformations 7% — Id. The group of invertible transformations
on X, with the weak limit topology, becomes a metric space via the norm

o0

ITI = 3 (T4 & Ax).
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The commutant is the weak closure of the powers, for rank-1 transformations 3

where the fixed sequence of sets (A )72, was chosen to be a generating algebra of sets. By dropping
to a subsequence of the (s;);, we may assume, for each ¢, that ||T%| > Z;o:i+1 |T%]|. Now for
each binary vector b = (byby - -+ ), where b; € {0, 1}, define the transformation

— ol m; N e
Sp = \;V_l)lgng ‘, where m; = Ej:l bj-sj.

If 7 is the smallest such that b} # b;, for binary vector b’, then Sy # Sp. This, since

= ST > 0.

j=it1

1Sp ", Serll > |7

So WCI(T), hence C(T), is uncountable.

DEFINITION. We say that T is rank-1 if it can be built by cutting and stacking with but one column
at each stage. Specifically, we can find base sets B,, C X and heights h, — oo such that for all n,
the sets By, T(By),...,T"~1(B,) are disjoint, and there is some subset E C [0, h, — hp—1] of
levels such that Bn,—1 = {J;cp T'(B,). Also, the sets {Ti(Bn) ‘ neN & 0<i1< hn} generate.
For a rank-1 T one can always find a generating partition P and stacks as above where each stack
has but one P-column. This P-h,-word is called the n-block and is denoted W,,). Usually the n
is implicit and we write A and W for h, and W(,). Factors of rank-1 are rank-1. Rank-1 is
automatically ergodic.

In the sequel, T: X — X is a fixed rank-1 transformation (on a non-atomic space).

DicHOTOMY THEOREM. The commutant of T is trivial or uncountable. In other words, EC(T) is
the trivial group of one element or EC(T) is an uncountable group.

PrROOF. This follows from the weak-closure theorem, below, by (0.2) and the result that rigid
transformations have uncountable commutant. O

WEAK-CLOSURE THEOREM. WCLT) D C(T).

This yields several corollaries.

(A) C(T) equals WCI(T') and is therefore an abelian group. Every factor algebra of T is
invariant under each S € C(T). Given any transformation F which is a factor of T, we get a
natural (into) group homomorphism ~: C(T)— C(F) simply by mapping each S € C(T) to its
restriction to the sub—sigma-algebra which determines F. This v need neither be injective nor
surjective. However if T is non-rigid and the factor F is non-atomic, then v is injective (contrast
example (iv), below) and T cannot be a group extension of F.

(B) IfT is weakly isomorphic to some transformation R :Y — Y via factor maps p : X =Y
and ¥ Y — X, then T = R and ¢ and v are each isomorphisms.

(C) T is not a cartesian square. Consequently, if T is of the form RyxRy then Ry and R,
must be relatively prime, i.e, no factor of Ry is isomorphic to any factor of Ry. Moreover, if T is
non-rigid, then T cannot be a cartesian product. (Contrast example (vi).)

(D) For each k > 2: If T* is rank-1 then C(T*) = C(T). Hence if T is non-rigid then the rank
of T* is at least 2. (Contrast example (v).)
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PrROOF OF (A). If F is a T-invariant sub—sigma-algebra then F is invariant under every
power of T" and hence each weak limit of powers of T. Thus the group homomorphism ~, where

~(S) = S|, is well defined.

The stated injectivity of + is seen as follows. Since F' is ergodic on a non-atomic space, Id =
note

F? ~(T*) implies that s = 0. So the kernel of ~ is trivial. Suppose T were a group extension
of F by some group G acting by, say, left multiplication. By letting GG act on the fibers over F by
right multiplication, we get a copy of G in C(T'), and this copy is in the kernel of . So G is the
trivial group and F =T. O

PrROOF OF (B). Every S € C(T) is invertible, so T cannot be a proper factor of itself and
therefore 1) 0 ¢ is an automorphism. O

PROOF OF (C). Suppose we could find a transformation R: Y —Y and an isomorphism X =
Y x Y such that T = R x R. Each power of T, then, is a cartesian square and consequently so
are weak limits of such. Were the coordinate-flip map (y,y') — (v',y) a cartesian square, then Y
would be a one-point space.

That T cannot be a cartesian space implies that, if T has a factor of the form R;xRs, then
Ry and R are relatively prime. For if Ry has a factor, call it R, which is isomorphic to a factor
of Ry, then Ry x Ry has a factor of the form R x R. Thus T has a factor R x R. By a coding
argument one can show that factors of rank-1 are themselves rank-1. Hence this R x R is rank-1,
contradicting the previous paragraph.

Now suppose C(T) is trivial and T is isomorphic to some non-trivial cartesian product Ry x Rs.
Then Idy x Ry € C(T), so there exists sy # 0 such that Id; x Ry = T°'. Thus (Ry)" = Id;.
Similarly, there exists sy # 0 such that (R2)°? = Idy. Then the product sys9 # 0, yet T°1°2 = Id.0J

PrOOF OF (D). Fix k > 2. For every transformation T we automatically have the upper,
lefthand, and lower inclusions shown below:

C(T) c C(TF)
U N
WCI(T) > WCI(TF)

If T* is rank-1 then the righthand inclusion holds and therefore C(T*) = C(T). But T € C(T*),
so C(T*) is uncountable. And since C(T) is uncountable, T is rigid. O

Remark. The referee mentions that the first half of corollary (C) follows from known spectral
results: A rank-1 must have simple spectrum (Baxter). A cartesian square has spectral multiplicity
at least two. Hence a rank-1 cannot be a cartesian square.

More generally, no transformation of the form R’ x R* can be rank-1. If it were, then since
R x R € C(R" x RY), there would be a sequence (n;); of naturals such that

(R = R and (R*)™ = R.
Hence R™i* - R¥ and RF"! - R’ so R*¥ = R’. But a cartesian square cannot be rank-1.
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The commutant is the weak closure of the powers, for rank-1 transformations 5

EXAMPLES. Non-rigid rank-1 transformations are not well understood. The only types of examples
known to the author are the following:
(i) Ornstein’s (or any) rank-1 mixing [9].
(ii) Friedman and Ornstein’s partial mixing transformation, [2], but done in rank-1.
(iii) Chacén’s weak mixing transformation [6].
(iv) The following skew product T. Let F: X — X be a rotation of some discrete space X =
{0,1,...,k—1}. Let S: Y — Y be any non-rigid rank-1. Define T': XxY — XxY by

(Fz,Sy) if @ =0
(Fz,y)  otherwise.

ro = |

Transformations (i) and (iii) have minimal self-joinings, see [8] and [6], respectively. Transfor-
mation (iv) does not, possessing a discrete rotation as factor. Can more complex factors appear?

Turning our attention in the other direction, we give two examples of the kind of behavior one
can obtain by building-in rigidity.

(v) A weak mizing transformation T whose non-zero powers are rank-1:
The weak mixing is the issue —otherwise an irrational rotation would serve. Define the function

f:N—=Nby f(n) =n!—1. Then f has the property:

Foreachn: VdeZ,ds¢€ {0, 1,...,f(n)} such that d+s (%)

is relatively prime to each of 2,3,....n

We build T by cutting and stacking. At a fixed stage n, let W and W' denote the n-block and the
(n 4 1)-block, respectively, of heights h and h’. We build W' as a concatenation of copies of W
and spacers.

WW...WWW...W | WW..W |||...]
—_— —
) ) spacer ) S——
{ copies { copies { copies s spacers
Length d

Let d be the length 3¢h+ 1. We pick ¢ so that £ > nh and also so that (f(n)+1)/d < (%)" By (%),
we can pick an s < f(n) so that h' == 30h 4+ 1 + s is relatively prime to 2,3,...,n. The amount of
mass we add as spacer, at stage n, is (s + 1)/h’. Since this is less than (%)" —a summable function
of n— our cutting and stacking indeed does define a transformation on a probability space. T is
seen to be weak-mixing by the standard argument showing Chacoén’s transformation weak-mixing.

Why is each T* rank-1? We use the following criterion, equivalent to the definition given
previously, to show that a transformation is rank-1: Given any ¢ and any partition (), there is a
Rohlin stack such that ) is e-refined by the partition whose atoms are the stack’s column levels
and the stack complement.

Let B denote the base of the n-stack. From the preceding figure, u(B ~ T"B) <

1 1

k—1

(B)n---n[T™"]""(B).

Then (B ~ A) < (k — 1) u(B ~ T"B) and we can have chosen n large enough that this latter

is less than 5. Also, Thi(A) C B for each 0 < j < k. Thus T7(A) is included in the B-stack
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U?:_OI T'B, for each 0 < j < hk. We may assume that n > k, and so k is relatively prime to h.

h— e
Consequently the sets A, Tk(A), ceey [Tk] ! (A) are disjoint (since they are included in different levels

of the B-stack) and hence form a Rohlin stack for T*. The partition distance from the column-level
partition of this stack to that of the B-stack is less than 2-h - (B~ A) <2h - 57 =c. O

Question. A special case of a result in [8] is that rank(T*) = k, whenever T is rank-1 and mixing.
Is this true for Chacon’s transformation or, more generally, for every weak-mixing rank-1 transfor-
mation which is non-rigid? Under what circumstances (one can ask this for a general finite-rank 7') must
the function k + rank(7*) be monotonic on those values k for which T* is ergodic?

(vi) A rank-1 weak-mizing T which is a countable cortesian product RyxRax---.
First let us address building a weak-mixing rank-1 product Ry x Rs. It is well known that one can
build such a beast and del Junco remarks to this effect, in [4]. Having not seen a construction in
print, we sketch one way to proceed. Pick a sequence ¢, N\, 0. We build R; and R; simultaneously
by cutting and stacking much as in example (v). For i = 1,2 we let B;(n) denote the base of the
n-stack of R;, with height h;(n). We can arrange that for each n and i:

(%) hi(n) and ha(n) are relatively prime;

i(n) En
(%) 1 <Bl(n) \R? Bi(n) > <
(Bm)) = B

where p(n) = hi(n) - ha(n). On the product space we can find, for each n, a set A C By X By
satisfying
£
o
Here, the terms A, B;, ¢ and p denote A(n), B;(n), e, and p(n) respectively.

We make A as follows. Let A = A; x Ay where

pixpa((Br x Ba) N A) < (0.3)

Ay =By n [R7M](B) 0 [RyM]3(By)n -0 [R7™])"(By).

By (%), then, pq(By ~ A1) < ha - ]% < 6}#. Now define A, by reversing the roles of ‘17 and ‘2’.

Hence A C ByxB3 and (0.3) holds.

For each k with 0 < k < p, notice that [Rl X Rg]k(A) C lel(Bl) X R’;Q(Bg), where k; is
E (mod h:)- So, by (%), the first p iterates of A are disjoint. Moreover, these p iterates fill up most
of the first p iterates of By x Bs.

But, letting n range over N, the first p(n) iterates of By(n) x Bz(n) generate the product space’s
sigma-algebra. Consequently, so do the first p(n) iterates of A(n). Hence Ry x Ry is indeed rank-1.

It is worth remarking that we built rigidity into the R; —and the Weak-closure Theorem,
corollary (C), comforts us in that we had no choice. But it also implies something which is less
apparent from the construction; that Ry 2 Rs.

In general, construct Ry, Ra, Rs, ... simultaneously so that at each stage n: hy(n),..., h,(n) are
relatively prime and (#*) holds for i = 1,...,n, where p(n) = [[_, hi(n). Thus each Ry x---x R,
is rank-1 weak-mixing.

The countable product Ry x Ry x --- is weak mixing, and seen to be rank-1 as follows. Suppose
Fy C F C --- is a sequence of factor algebras of a transformation T such that \/fO F, is the whole
sigma-algebra. If T|z, is rank-1, for each n, then the ‘c-refining’ definition of rank-1, given in
example (v), shows that T is rank-1: Each partition ) can be approximated as well as desired by
some @' living in some F,. O
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Remark. By corollary (C) of the weak-closure theorem, Ry x R3 x R5 X - - - must be relatively prime
to Ry x Ry X ---. The collection {R;}2, has the curious property that for each set I of indices,

the transformations
H R; and H R;
r€1 7 ENNT

are relatively prime.

51 To prepare for the proof of the weak closure theorem, we establish a few lemmas.

(1.1) DEFINITION. Let T : X — X be ‘cutting and stacking’ rank-1 with generating partition P.
Denote the n-block by W(,) and its height by h,. Thus W = W]k is a P-h-word where, as will be

usual, we have suppressed the subscript.

Given S € C(T), we can approximate S by a finite code C. That is, given ¢ we can find ¢ such
that

\/TP) >. S7(P). (1.1.1)

Our code is a map from P-[—(,(]-words to the alphabet P. Let CodeLen(C) mean the quantity
20 + 1. The ergodic theorem and (1.1.1) say, for a.e @ € X, that d(C(:z;),S:z;) < e. Define

ErrorRate(C) to be 2e. We say that a substring :1;|“;+b codes-well (under C) if
J<C<x|§+b>, (5:1;)|“;+b> < ErrorRate(C) .

Following the usual convention, the writing of C(:z:|“;+b) shall tacitly imply that b > CodeLen(C).

Consequently, we can view C(:z:|“;+b) as a string of length b by harmlessly absorbing the end effects
of the code into its error rate.

Because we gave ourselves a bit of room by defining the error rate to be twice ¢, an application
of the ever-popular ergodic theorem yields the

(1.2) STANDARD CODING LEMMA. Fix some code C. For a set of € X of full measure, ¥Y¢', Margeh:
Cover, in any way, at least (1 — §')-percent of z|° by disjoint substrings of length h. Then at least
(1 —2¢")-percent of |5° is covered by those, of the above substrings, which code well under C.

Proor. Standard. O

Now let C = {Cj};ozl be a collection of codes such that ErrorRate(C?) — 0, as j — co. Let A
be the algebra of T, P-cylinder sets. The algebra AV S™1(A) is countable and so, for a set of full
measure of x € X, the orbit 2|5 hits each set in AV S™!(A) with the appropriate frequency. We
may also assume, for these same z, that the Standard Coding Lemma works on z for each code in
the countable collection C. Consequently, we can pick a point #, then an x € S™'({#}), such that
both lie in this set of full measure.

(%)  For the remainder of this section we consider T', P, S, x and # as fixed. The word “code”
henceforth mean some code in C. Also, when considering doubly infinite T', P-names such as y,
z € X, agree to interpret d(y, z) as d<y|8°,z|8°>.
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(1.3) LEMMA. For each sequence of integers (s;);:

T Y S e (T (2), i) — 0. (1.3.1)
J J

PROOF. The left hand side of the above is equivalent to:
For each cylinder set A: p(T7%(A) A ST'(A)) — 0.

For each such A and every j, the set T7% (A) A S™'(A) is a member of our algebra AV S™1(A).
To prove the (<) direction, pick ¢ such that A is an atom of \/é__é1 T'P, and let A|*, denote the

P-word corresponding to A.
p(T™%ANST'A) =Freq{i e N|T'2 € T™% A XOR T'z € ST'A}
= Freq{i € N| T% (z)|:¥; = A|", xor #|iT] = A"}
< Freq{i € N | T (x)[i2/ # 2| %
< 20- J(Tsj (z), :JZ') )

Now send j — oo. The proof of the (=) direction is similar. O

Recall that we let W, or just W denote the word which is the n-block. Its length is h, or just h.
For an integer s measuring the length of something connected with W, let 5% denote the number 7.

For each y € X we say that a substring y|§+h
n-stack.

is a W-copy if it is a point in the base of the

For the sake of contradiction, assume henceforth that S ¢ WCI(T).

(1.4) SHIFT LEMMA. There exist constants e¢’, o > 0 such that for each code C with ErrorRate(C) <
¢', for all large n, whenever a shift value s € |", is such that:

(in the case s > 0): J(C(W|g),W|g_8> <,
(in the case s < 0): J(C(W|g+8),W|’is> <,

then ‘3%‘ > 20.

overlap

F1GURE 1. If the d distance between C(W) and the shifted W-copy is small on their overlap, then
the shift, s, measured as a fraction of the length of the n-block, must be larger than a certain
constant, 20. Here s 1s drawn positive.
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PROOF. Since S ¢ WCI(T) there exists ¢ for which

4e < (T~ 2,7), Vs€L.

If the lemma is false, then we can choose a code C, with ¢ == ErrorRate(C) < ¢, and then a large n
and non-negative (without loss of generality) shift s € |? such that s% < ¢ and

dCWM),WE™*) < e < e

We may assume n sufficiently large that § < & where 1 — § := u(n — stack). Suppose :1;|§+h is a
W-copy. Then
d((T~>e)|", Ca]*"))

< 5%~ (d-error on |\T*) + [1 — s%](d-error on |Zig)

< e'14+1-e < 2e
Since (1 — §)-percent of x|5° is covered by W-copies,

C?(T_S:I;,C:I;) < G- 14(1=6)-22 < < 3e.

So d(Cx,#) < e < ¢ produces d(T~*z,#) < 4¢ and a contradiction. O

Agree to regard o as a primordial constant, ‘known in advance’. In the sequel, code means a
code with error rate less than ¢/. We now can forget the existence of ¢ and restate the lemma
informally as:

For each code and for all large n: If the n-block W codes-well on the overlap
to shift of itself, then this shift must exceed an a priori percentage of W.

(1.5) DEFINITION. For a fixed implicit n, the symbol W = W |% represents the n-block. For integers
i and p, let ¢ & p mean the number ¢ +p (mod h). Let WoHp mean the h-word defined by

(Wap)li = Wlap . for each i € |%.

Given ¢, we say that W is e-periodic (of period p) if d(W, W Tp) < . Saying W has periodicity p
will mean that W is e-periodic for some as yet unspecified .

Let N denote the integer constant for which N +1 > % > N.

(1.6) PERIODICITY EXTENSION LEMMA. Given &, there exists ¢’ and codes {C;}Y., such that for
all large h: Suppose we have an h-word W, an integer p, and an r € N with r% > o. Suppose that
when r' == r (or ' .= —r) the following two conditions hold:

() AWl (Weplly) < & ;

(ii) For each i, the distance d(Ci(W), W@r’) < ErrorRate(C;).

Then d(W,Wdp) < /2.

Remark. Informally, this says that periodicity on a sufficiently long piece of W can be extended to
all of W, Although the error rate will get worse, we will not lose control of it.
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PROOF. There is no loss of generality in assuming r’ = r. Setting ¢g := ¢/2 we inductively pick
the codes as 7 =1,2,..., N.

At stage i: Pick a positive e; < £,-1/2. Then choose a code C; with error rate less than oe;.
Set k; = CodeLen(C;). Finally, pick an &; so small that k;e; + 2¢; < g;_1.

The induction done, set &’ .= ¢n. Suppose, now, we are given an h sufficiently enormous that
ch > max; k; and, consequently, we may absorb the ‘end effects’ of our codes into their rates.
First, we copy the periodicity on |5 to |2" using code Cn:

d(CN(W1G) ., Cn(Weplh)) < kn-d(WIG, Wéaply) < knen.

From (ii) we get J(W ?,T,CN(W|6)> < ey and J(CN(W®p|6), W@p|6>a Wap|2") < eny. By the
triangle inequality

J(W ?,T,W@pﬁ,r) <en+knen+eny <en_i.

We can inductively continue to show for each ¢ = 1,..., N that

AW Weap|HT) < any < eo.

r r

This says that J(W, W@p) < &9 —or rather, it does if r divides h. To handle a general r, we
choose the ¢; inductively as before but with o replaced by (g0/2)%. This yields, for each i

AW WeplUTY < (20/2)° (1.6.1)

r r

Let M be the integer which makes Mr < h < (M + 1)r. Either (h — Mr)% exceeds e¢/2 or not.

In either case (by Fubini, in the former)
h— M- dW)h, Weplt, ) < h- 2. 1.6.2
Mr Mr D)
Since (g9/2)? is less than &4 /2, inequality (1.6.1) implies that
€o

Mr-d(WIHT Wepl)') < Mr-Z- < b

This together with (1.6.2) yields the desired d(W, Wdp) < g9 = /2. O

(1.7) Proof of weak-closure theorem

Using an ¢ to be specified later, the Periodicity Extension Lemma hands us a collection of N codes
and the number ¢’. Let C be an even better code having error rate e, where 2¢/0 < &’.

Pick positive § and v to be specified later. Lastly, choose an n so that h := h,, is sufficiently large
+h i+h+g+h
? t+h+g

W-copies on z. Suppose there is a W-copy :I;|“;+h ‘lying below’, i.e, with 1+ < j <1+ h 4+ g. Say
that W-copy :1;|§+h is good if:

to work for the periodicity extension lemma. Suppose that z| and x| are two successive

i+h+g+h

o ithtg > (1.7.1)
and :1:|“; codes-well under our N + 1 codes.

i+

9% < ~ and each of the words z|/ ™", z|

Ergodic Theory and Dynamical Systems, vol. 6, (1986), 363-384.
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FI1GURE 2. Picture of a good W- g
ith L
copy z[;7". Wecall s = j —i X
the shift associated with m|z+h e

and ¢ the associated gap. We
i+h+g+h
i+htyg

copy; 1t may or may not be good.

o
i+h i+h+g i+h+g+h

call z| its suecessor W-

=/

(A W-copy is shown as a thick ] ql ]+h

bar with a large dot indicating

I
I
I
I
|
I
! I
its first coordinate.) I shifts |

One may have chosen n sufficiently large that:
At least (1 — §)-percent of z|g° is covered by good W-copies. (1.7.2)

For we can have chosen n large enough that (1 — ¢)-percent of z|3° and #|3° are covered by W-
copies, where ¢’ is some number ¢’ < § and ¢’ < ~%. Thus most W-copies on z|3° have a W-copy
‘lying below” on # and, by a Fubini argument, have a gap less than v. Moreover, we can have
insisted h (= h,) be so large that the standard coding lemma works (for our chosen §) for all N 4 1
codes simultaneously. Thus (1.7.2) holds.

Since the good :1;|§+h of figure 2 codes-well, the shift lemma says that s% > 20. Because its
successor codes-well, 1 — s% + g% > 20. We may assume that v < o. Therefore o < s% <1 —o.

Periodicity suffices. We make a simplifying assumption to be removed later: Suppose there is a
good W-copy with gap zero. Pick one such, henceforth called the reference (W-copy), and denote

its associated shift by r. That the reference is good tells us that d(C(W),W & (—r)) < e (this is

shown pictorially in figures 4 and 5). Our theorem is proved, should one be able to insure that:

For each g, the gap associated to a good W-copy:

The n-block, W, has e-periodicity of period g. (1.7.3)

PROOF OF SUFFICIENCY OF (1.7.3). Let 0 < 4y < iy < ... be the first coordinates of the
successive W-copies, good or not, along x|5°. Let gy denote the gap between :1;|Z+h and its successor.

If :1;|Z+h is good we say, by abuse of notation, that ¢ is good.

no gap
Ref . — ® o — ‘
eference | Code | ¢ | l Code | C 1
picture: ! arrow | or equivalently ' arrow |
| o N C o )
'~ tail “‘head “head  tail

r

F1GuRE 3A. The reference picture says that W codes-well to a rotation of itself. Thus we can
split W into a ta:l, W|g_r, and a head, W|Z_r. Restated, W codes-well to itself with the head
and tail transposed.

Ergodic Theory and Dynamical Systems, vol. 6, (1986), 363-384.
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FIGURE 3B. We construct a name y which is d-close to C(x), simply by taking z and transposing
the head and tail of each W-copy on x. Now, to make z, take y and pull each head back over
the gap behind it and glue it to the preceding tail. For most heads, this shift in position makes
only a small d-change. After all, for most gap-lengths our word W —hence the head of W~ is

d-periodic of that gap-length.

We synthesize a half-infinite P-name y = y|g°. For { = 1,2,... define

yli ™ = W S WL W

Set y equal to Cx elsewhere, i.e, y|§ﬁiz+g" = C(:z;)|§ﬁiz+g". Then

d(y,C(z)) < d(W & —r,C(W)) < e.

So

dly,#) < d(y,Cx) +d(Cx,i) < e4e < 2¢.

Fix some ¢ and let i, g and I denote i,, g¢ and g; + h respectively. Recall that y|

If our chosen / is good then (1.7.3) gives d(W, Wdhg) < e and consequently

_ Wlog 2
d(w|k " o< e+ % < SR ves e

h—r YlT

r% o

We construct a P-name z = z|g°. For each good /¢, define Z|“’+h+r

ie+h
equal y. Then

2 2
d(z,y) < =% < =
o o

But a glance at figure 3 shows that for good ¢,

te+r+h _ ie+h
Z|iz+7’ - W - x|iz :

Thus d(T7 "z, z) < 4, by (1.7.2). Consequently,

Wlog He

- 2
d(T "z,7) < S+ =0 <0
2

g

But we could have initially chosen e sufficiently small that

5 B
X < inf d(T™ %z, &).
(o} SEZ

This gives a contradiction, and hence (1.7.3) suffices.

g

= W|z—7’* .

Ergodic Theory and Dynamical Systems, vol. 6, (1986), 363-384.
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The commutant is the weak closure of the powers, for rank-1 transformations 13

Obtaining partial periodicity. For the remainder of this discussion, fix some good W-copy
henceforth called the object W-copy, and let ¢ and s denote its associated gap and shift, respec-
tively. We will obtain the desired periodicity, d(W, Wdg) < e, by comparing the constraints placed
on W by the object and reference W-copies. Let k denote the odd number CodeLen(C). We now
wrap both pictures into circles. For the reference picture, we simply identify the two W-copies in

the upper line.

Reference picture Object picture
8
N

¢ S o ¢ S o

| Code l C | Code | C

| arrow | arrow

| |

| ¢ | ¢

I ! | I

\/‘ \/‘

r s

F1GURE 4. In both pictures the upper line codes well under C to the lower line. For each position
in the lower line (of either picture), the code ‘guesses’ what letter is there by looking at the
k-word above centered over that position. The ‘guess’ disagrees with what is actually in the
lower line, with frequency less than e.

Reference circle Object circle

(7
o / ~
2,

*

Figure 5. The reference and object pictures are each wrapped into circles of circumference h.
The reference circle has caliper length . The object circle has a large asterisk replacing the gap.
Its caliper has varying length; s — g when the caliper straddles * and length s when it does not
straddle *. As drawn here, the caliper is not straddling the *, that is, its code end and its arrow
end are not on opposite sides of the *. So, as drawn here, the caliper length is s.

Since the lower line is also a W-copy, C now maps the circle to itself and the code arrow gets bent
into a sort of code ‘caliper’ which maps a k-word to a letter r positioned clockwise around the circle.
The caliper has a ‘code end’, of length k, and an ‘arrow end’, of length 1. If we slide the code end
once around the circle, one position at a time, then the letter the arrow end writes down agrees
with the letter the arrow is pointing to, at least (1 — e)-percent of time i.e, J(C(W), W & —r) < e.

We wrap the object picture into a circle by identifying the two W-copies in the upper line of
figure 4, discarding the gap. Without the presence of the gap, the caliper has length s — g or
s, depending on whether or not it straddles the spot where the gap used to be. If we slide this
caliper around its circle, we see errors at the arrow end with frequency less than e. (Actually, there
are additional errors due to ‘end effects’ as the code end of the caliper slides over the asterisk. The frequency of
these errors is on of the order of 2k% + 29% < 2k% + 2. Both k% and v can have been made arbitrarily small by
having picked n, hence h, sufficiently large. Consequently, we can harmlessly absorb these end effects into the code

error rate.)

Ergodic Theory and Dynamical Systems, vol. 6, (1986), 363-384.



14 J.L. King

Agree to refer to the calipers of the reference and object pictures as the r-caliper and s-caliper,
respectively. We now superimpose the two circles. The calipers are

<&
o
F1gure 6. The calipers of the —x

previous figure have been su-

perimposed. Therefore, the

two letters in W, pointed at -
by the two arrowheads, can

fail to agree with frequency at

most 2e.

ganged at the code end. We slide this once around the circle. Since the arrows usually point to
equal letters —with frequency better than 1 — 2e, in fact— we see that the circle, W, has two
complementary intervals of periodicity. These two intervals are respectively, the set of positions
of the s-arrow when the s-caliper straddles/does-not-straddle, the asterisk. So their percentage
lengths are s% and 1 — s%. Their periods are (measuring counterclockwise) p and p — ¢, respectively,
where p = —(s — g — r). The quantity p may be positive, negative, or zero.

Extending, then comparing, periodicity. What will be important is the length of the two
complementary intervals of periodicity, not their locations on the circle. For notational convenience,
let W3 denote the interval with periodicity p and W|"* the interval with periodicity p — g.

Recall that, in figure 6, the letters in the positions indicated by the two arrows disagree with
frequency less than 2e, as we slide the ganged calipers once around the circle. Suppose we know

that r% < s%. Then

dW|5, Waply) < 2¢/r% < 2e/o < &
Since the reference W-copy is good, each of the N codes, that we chose by means of the Periodicity
Extension Lemma, works well for the reference picture of figure 5. Hence we may appeal to this
lemma, with ' == —r, and conclude that d(W, Wdp) < /2. Similarly, if r% < 1 — s%, we could
pick a subinterval of W|"__ of length r and extend its periodicity to obtain

7 note 7

/2 > dWd(p—g),W) = d(Wap, Wayg).

Beating one period against the other yields the desired

AW, Wag) < d(W,Wép) + d(WEp, Wkg) < ¢.

Final details. The above argument lives if 7% < s% and 7% < 1 — s%. Or, if 1 —r% < 5% and
1 —1% < 1— 5%, the argument persists by using r’ := r in the Periodicity Extension Lemma. In
order to choose the reference copy so that one of these cases always holds, let s, s2,... denote the
shifts, a la figure 2, associated with the good W-copies along x|5°. Let ¢ be an index such that

min{s,%,1 — s, %} = iglgiriu;n(min{sL%, 1—s.%}).

We choose this good W-copy, :1;|Z:‘+h

", to be our reference, and set r = sy.

Ergodic Theory and Dynamical Systems, vol. 6, (1986), 363-384.
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But the associated gap, g¢, need not be zero?! However, we can do all previous arguments with
W and h replaced by W' and h', where h’/ .= h + g, and W' = :1;|Z+h/. We can still draw the
reference and object pictures of figure 4 —but now the ‘gap length’, g, of the object picture may be
negative. Nonetheless, we still have ‘g%‘ < ~ and so we can do the arguments of Obtaining partial
periodicity and FEzxtending, then comparing, periodicity as before. The argument in Periodicity
suffices also persists modulo minor notational changes (in figure 3B, for example, ‘heads’ of W-copies will
be pushed forward over negative gaps, in going from y to z) This completes the proof of the weak-closure
theorem. O

Remark. The theorem is not true, in general, for finite rank mixing transformations; for instance,
if S is rank-1 mixing and we set T == S* for some k > 2. Since T is mixing, WCI(T) = {T"}>_.
Thus S € C(T) ~ WCI(T). One can easily show (e.g [8]) that T is rank-k and C(T) = {S"}=,..

62 In this section we show that every proper factor of rank-1 transformation is rigid; hence,
each non-atomic factor has uncountable commutant. (I am indebted to Dan Rudolph for several
conversations on this result. Chris Bose, a doctoral student of M. Akcoglu at the University of
Toronto, was able to prove this same result, using the techniques of our §1.)

We start with rank-1 transformation R : (2, A4,p) — (2, A4, ) with ‘cutting and stacking’
generating partition ). Suppose we are given a partition P on 2. This determines the factor
sigma-algebra F = \/i=___ R'P. Let T denote the factor transformation R|z and let X denote

the factor space. We can view P, F and g as living on X and so T : (X, F,p) — (X, F,pn). We

get the commutative diagram

0O —" 4,0

oLl
T
X — X
where ¢ represents the factor homomorphism.
To show that T is rigid it is enough to show:

There exists a never-zero sequence (s;)52, such that T* — Id. (2.1)

SKETCH OF PROOF. The goal of this sketch is to define terms x, #, C, and good W -copy
which, in our factor context, will play analogous roles to the terms of the same name in §1. We
then will be able to appeal to the machinery of (1.7).

Without loss of generality, every z € X is typical for the T, P-process. So, emulating lemma 1.3,
we can choose some T, P-name z € X and reduce the problem to showing: Given ¢, there exists

s # 0 such that d(T°z, z) < 100e. It suffices, then, to show:

Ve, 3 P-names  and ¥ and an s # 0 such that 51!
d(z,z) < e and d(z,%) < ¢ and d(T°z, %) < e. (2.1

So, for the sake of contradiction, we assume that there is some positive number ¢’ such that: For
each sufficiently small ¢ and every pair of P-names = and # such that d(z,z) < ¢ and d(z,%) < ¢,
it is the case that
infimumd(T%z, %) > o. (2.2)
s €Z~{0}

Ergodic Theory and Dynamical Systems, vol. 6, (1986), 363-384.
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Choosing w and . For the R,Q-process, let W/ and h!, denote the n-block and its length,
respectively. Usually we suppress the subscript and write W' and h’. For each w € , say that
w|§+h/ is a W'-copy if R(w) is in the base of the n-stack.

It is convenient to defer the proof of the following fact: We can choose and fix two points
w,w € Q for which p(w) = p(©) and the following holds.

V4, V large n: At most d-percent of w|3® is covered by

i+h' (2.3)

. . o 17 o,
W'-copies w| for which w|§+h is also a W'-copy.

In other words, rarely do W'-copies along w line up perfectly with W'-copies along w. We will
prove this fact in §3 using the idea of self-joinings.

Making the names r and # and the code C. Henceforth the points w and @, in €, and the
point z = p(w) = ¢(@), in X, are viewed as fixed. The factor homomorphism ¢ is a map from
R, Q)-names to T, P-names. It can be approximated arbitrarily well by finite codes. We will call
such a code, a ¢-code. Since there are but countably many @-codes, we may assume that each
p-code codes-well on every R, ()-name in §).

Given a positive number e less than ¢, we can pick a ¢-code & with ErrorRate(®) < e/4. Set

= ®(w) and & = ®(w). Then d(z,2) < ¢ and d(z,4#) < £, and therefore

4 47

d(z,) < £. (2.4)
Recall that, in (1.7), the symbol C denoted a code mapping the P-name x to &, with error rate less

than e. In our present context, in light of (2.4), we can just let C be the identity code (codelength= 1)
which maps the alphabet P to itself via the identity map.

Emulating the setup in figure 2. Let 2/ + 1 denote CodeLen(®) and choose n sufficiently large
that h' > ¢, where h' means h/,. The Q-h'-word W' codes, under ®, to a P-(h' — 2{)-word which
we denote by W. Let h denote h’/ —2(. Agree to call :1;|§+h a W-copy if it is the image of a W'-copy
ie, if w|§f?+£ is a W'-copy. Similarly, say that :i;|“;+h is a W-copy if d)|§f?+é is a W'-copy.

Now that we have defined the term W-copy, we can use figure 2 to define the gap between a
W-copy and its successor W-copy, as well as the shift of a W-copy on z relative to the W-copy
‘lying below’ it on #. We can have chosen n sufficiently large that most W-copies on = have a
shifted W-copy ‘lying below’. Moreover, (2.3) implies that for most W-copies on x, the associated
shift (as in figure 2) is non-zero (hence positive).

Now (2.2) implies that there is a constant o > 0 such that the following version of the shift
lemma, (1.4), holds. For every = and & obtained from a @ of sufficiently small error rate, and for
t+h

each sufficiently large n: Suppose | is a W-copy with positive shift, say s. Then s% > o.

Mimicking the proof of (1.7). Given ¢, use the Periodicity Extension Lemma to get ¢’. In our
factor context, this lemma is, in fact, easier to prove than in §1. This is because our N codes will
all be the same code —the identity code C, which has code length of 1. Pick some e so that 20—6 < e
Then choose a ¢-code ® with ErrorRate(®) < { and set 2 == ®(w) and & = ®(w); the role of the
‘N +1 codes’ from z to & will be played by the code C. Pick § and ~ and then choose n sufficiently
large that h, > CodeLen(®). Finally, say that a WW-copy :1;|§+h is a good W-copy if its shift is
positive and if it satisfies the definition of good that we used in (1.7.1).

Now we can replay the idea of the proof of (1.7) to conclude that J(T_rl',j?) < &, where r is

the shift associated to some good W-copy and, hence, r # 0. O
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§3 Given the two points w,w €  and a § > 0, say that the pair (w,0) d-match if, for
infinitely many values of n: At least d-percent of w|5°® is covered by W'-copies w|§+h for which

Z""h/ is also a W'-copy. In other words, the set of natural numbers

{i ‘ R'(w), R'(&) € (base of n—stack)}

@

has lower density exceeding §/h'.

Our unproved fact of (2.3) was the existence of a pair (w,©) which does not §-match (for all §, no
matter how small) and such that ¢(w) = ¢(©0). In order to state how to choose such a pair, we need
the notion of the relative independent joining over a factor F. So as to be self-contained, we will
review the necessary facts about joinings.

We first need to recall a standard consequence of the ergodic theorem (lemma 3.2, below). We
introduce some notation.

(3.1) DEFINITION. Fix some invertible transformation R on the space (Q, A, v) with partition Q;
denote the resulting stationary stochastic process by (R, Q;v).

Suppose 1 and ¢ are two R, Q-words of length ¢ and k, respectively, where ¢ > k. Index n from
zero i.e, n = n|§. Define the symbol Freq(q on 1) to be the number

O§i<i—|-k§€and77|§+k:q}‘.

o=y |{

Let QF denote \/f:_o1 R™Q. The partition QF is an ordered tuple of atoms say

Qk = <q17"'7qm7"'7qM>'

Define the symbol Freq(Q* on 1) to be the probability vector (an M-tuple) whose mth component

is Freq(gm on n).

We write d,(Q%), the “distribution of the measure v on Q*”, for the vector <1/(q1), - V(qM)>.
We remark in passing that this vector depends on v, whereas the previous vector does not.

Given two probability M-vectors @ and ¢, agree to let ‘6—8‘ denote the distance, 2%21 ‘am —Cm ‘,
between them.

The lemma below is proved essentially as is the standard coding lemma (1.2).

(3.2) LEMMA. Suppose (R, Q;v) is an ergodic process. There is a set of R, Q-names & € §) of full
v-measure, such that for all positive § and ¢, Vk, ¥V large h', the following holds: Cover, in any way,
at least §-percent of w|5° by disjoint blocks

OB, BT el
Then at least g—percent of w|3° is covered by those (D|§:+h/ satisfying
Freq(Q" on @l *") — d,(Q%)] < < (3.2.1)

So, in particular, there exist values m such that (3.2.1) holds.

ProoF. Follows from the ergodic theorem. O

Remark. Agree to call a name, &, generic for the process (R,Q;v), if it is in the set of full
v-measure of the lemma.
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Joinings. Suppose (2, A, 1) and (A, B,m) are Lebesgue probability spaces. A measure v(-) on

(2 x A, A x B) is called a jotning of 1 and m, if its marginal measures are p and m, respectively.
That is,
VAe A: v(AxA) = p(A)

and

VBeB: v(Q2xB) = uB).

It is technicality to check that a joining, v, of a Lebesgue measure with a Lebesgue measure must
itself be a Lebesgue measure.

Now recall the transformation R: (2, A, ) = (2, A, i) of the preceding section. A self-joining
(of R) is a joining of p with p that is RxR invariant. Self-joinings were introduced in [10]. Agree
to call a self-joining, v, ergodic if the transformation

RxR: (QAxQAxAv)—(QxQAxAv)

is ergodic. We abbreviate the above transformation by (R X R: Q2 xQ,Ax A, 1/).
An example of a self-joining of R is diagonal measure A(-) which, like every joining, is
completely determined once defined on rectangles:

VA,Be A: A(Ax B) = u(ANB).

This A is called diagonal measure because its support lies on {(w,w) ‘ w € Q}, the diagonal of
Q x Q. Notice that (R x R: 2 x Q, A x A, A) is isomorphic to (R: Q, 4, 1), so A is an ergodic
self-joining.

Our factor algebra F gives rise to another kind of self-joining. Define pr, the relative inde-
pendent joining over F, by: For all A, B € A,

pr(4 B) = [ PAIF) - P(BIF) du.

where P(-|F) denotes conditional probability. Notice that pr assigns full measure to the set
{(w,®) ‘ ¢(w) = ¢(w)} where ¢ is the factor homomorphism. Call this set the support of pz.
Depending on the factor F, the self-joining pr may or may not be ergodic. If it is not, it can be
split into ergodic components.

3.3 PROPOSITION. Every self-joining, v, has a decomposition of the following form:

vD) = [ my(D)ag (i), (3:3.1)
J
for every set D € A x A. Here, each mj(-) is an ergodic self-joining of R, where j ranges over the

‘space, J, of joinings’. The measure J(-) is a probability measure on the space J.

PROOF. Since v is a Lebesgue measure, we can apply the ergodic decomposition theorem to
the transformation (R x R: Q x Q, A x A, v). It yields the decomposition (3.3.1) where, for each j,
(RxR: QxQ,Ax A m;)is an ergodic transformation. So, we just need to show that each m;
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is a self-joining, by showing that its two marginals are each equal to p. Applying (3.3.1) to sets D
of the form A x €, yields

VA€ A p(A) = /ij(A < Q)dT(j). (3.3.2)

Treating m;(- x ) as a measure on (£, .4), we see that (3.3.2) gives a decomposition of i, or
rather, of (R: Q, A, 1), into ergodic components. But the ergodic decomposition of a measure is
unique and g is already ergodic! So, by discarding from .J a set of j of [J-measure zero, we have
that each m;(- x Q) equals p(-). Repeating this argument for the other marginal yields the desired
conclusion that each m; is a self-joining. O

We can apply the above to pr. Since F is a proper factor, pr is not diagonal measure. Con-
sequently we can find some self-joining in the ergodic decomposition of pr which is not diagonal
measure. This self-joining assigns full measure to the support of pr.

(3.4) PROPOSITION. There exists an ergodic self-joining p, with p # A, such that
p({(w,@) | pw) = 99(@}) = 1.

) is generic, in the sense of lemma 3.2,

) 6-match, then v = A.

(3.5) LEMMA. Suppose v is an ergodic self-joining and (w,
for the process (R x R,Q x Q: v). If 36 > 0 such that (w,

w
w

ProoF. It suffices to show that v = A on the algebra of rectangles of the form R, Q)-cylinder-set
cross R, (Q)-cylinder-set. So, given a length k£ and an ¢, we need to show that

4,(Q") = da(QY)] < 2,
where QF is to denote the partition \/f:_o1 [R X R] Z(Q X Q).

Since (w,®) §-match, the following holds for infinitely many n and hence, without loss of gen-
erality, for all large n (by having dropped to a subsequence and renumbered):

Jindices 0 < 1y < iy < -+ 1y, < --- such that, for
|lm+h/ lm+h/ W/ :
i i are W'-copies.

each m, strings w and &

Moreover, the blocks {(w,@)”:""hl ‘ m=1,2,.. } cover at least d-percent of (w,w)|g°. Conse-

quently lemma 3.2 asserts, our having chosen n adequately large, that at least one of these blocks
is pretty typical of the measure v. But these blocks are all identical and equal to (W), W,,). Thus

Freq(Q* on (W), W))) — d,,(@k)‘ < €. (3.5.1)

Vargen :

Let us now derive the same statement with v replaced by A. For each v’ € Q, the pair (w',w’) is

generic for (R x R,Q x Q;A). In particular, the pair (w,w) is generic. The blocks {(w,w)”:"’hl ‘
m=12,... } cover at least d-percent of (w,w)|5°. So, as before, lemma 3.2 implies:
Varger + |Freq(Q" on (W, 1)) — da(@¥)] < e.
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This together with (3.5.1) yields ‘d,,(@k) — dA(Qk)‘ < 2e, as desired. O

Now we know how to pick a (w,w) that never §-match and such that ¢(w) = ¢(w). By propo-
sition 3.4 we can pick (w,w) generic for the joining p and such that ¢(w) = (). Since p # A,
lemma 3.5 ensures that (w,@) do not §-match, for all 4.

We now know how to choose the pair (w,@) that we needed in (2.3). This completes the proof
that the factor transformation is rigid.

Remark. A restatement of the rigidity of factors is
A non-rigid transformation cannot sit as a (proper) factor of a rank-1 transformation. (%)

In particular, this is true for the rank-1 transformations of Ornstein and of Chacén (examples (i) and
(iii) of §0) since they are non-rigid.

Ornstein’s transformation, 7', is prime —it has no factor. Actually, since every factor of a rank-1
must be rank-1, it is equivalent to say that T is prime in the class rank-1, that is, it has no rank-1
factor. In this light, (%) says that T is ‘reverse’ prime, in the class rank-1. The transformation of
example (iv) in §0, is a transformation which is reverse prime but not (quite) prime.

Open question. For a fixed rank-1 T: (X, ) — (X, ) and for each S € C(T), one can define a
self-joining of T" whose support lies on the graph of S. This ‘graph measure’, vg, is defined on
rectangles by

vs(A x B) = pu(AnS™(B)).
In particular, for each integer & we get a joining vy« called an off-diagonal joining; denote it by
A*. The weak-closure theorem, restated, is that each graph joining vs is a weak limit (in the sense
of measures) of off-diagonal joinings. That is, we have a sequence (n;); such that

VA, B : A""(AXB)—VS(AXB)‘—}O.

7

This suggests an intriguing question: Must every ergodic self-joining be a weak limit of off-
diagonals? This is true for product measure p(A x B) = pu(A) - u(B) since

3 a sequence (n;); st. A" — p < I(n;); st. VA, B: n(ANT " (B)) = p(A)u(B)
<= T is weak mixing
<= p is ergodic.
Three remarks. (In this section, all transformations are invertible.)

With the notion of self-joinings we can elaborate a bit on corollaries (A) and (C) of the Weak-
closure Theorem.

Suppose S is a weak limit S = lim;_,~ T™ of powers of a transformation T on space (X, A, p1).
Then S inherits the commutant of T i.e, C(S) D C(T). Also, S inherits as factor algebras, all the
factor algebras of T'. More generally, each self-joining of T' is a self-joining for S. For if a measure
v(-)on (X x X, Ax A)is T x T-invariant then it is T™ x T™i-invariant; hence it is S x S-invariant
since

u<[5 x S] TN (Ax B) A [T x T] "(A x B)>

< /,L<S_1(A) AT-’”(A)) + M(S_I(B) AT_T”(B)>,
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where the two latter terms go to zero as i — oo. (This inequality follows from the inclusion relation
(AxB)A(A'xB) c [(AAA)YxX] U [X x(BAB),

which holds for every four sets A, B, A’, B’ C X.) We see thus that S inherits all of the self-joinings
of T.

It is worth noting that if S turns out to be rank-1, then, since T € C(S) = WCI(S), this T
inherits these properties from S. Hence T and S have identical commutant, factor algebras, and
self-joinings. For example, not surprisingly, all irrational rotations on the unit circle share these
properties. As another instance, the weak mixing T of example (v), in §0, has all its non-zero
powers rank-1; so these powers T* have common commutant, factor algebras, and joinings.

A comment in passing: The ‘weak-limit relation’ is a transitive relation i.e, for transformations
S1, 52, and Sy on the same space,

(S, € WCI(Sy) and S3 € WCI(S2)] => S5 € WCI(Sy).

The commuting relation’ is trivially reflexive (S; commutes with S5 == S5 commutes with S;). In
the class of rank-1 transformations, the ‘weak-limit relation” and the ‘commuting relation’ are
the same relation; hence it is an equivalence relation. This relation partitions the class rank-1
into equivalence classes. Either every element of such an equivalence class is weak mixing, or no
element is; this follows because (rotation) factors are inherited under weak limits. A ‘weak mixing’
equivalence class can be uncountable —a future paper will give an example of an equivalence class
containing an uncountable abelian group (except the identity element, which is not rank-1) of
weak-mixing rank-1 transformations.

Remark 2. With the notion of relative independent joining, we can refine corollary (C) of the Weak-
closure Theorem. The corollary says that a rank-1 transformation —say, on a space (X, A, u)-
can have no factor which is isomorphic to a cartesian square. In other words, if factor algebras
Fi1,Fy C A yield isomorphic factor transformations then F; and F; cannot sit independently
(orthogonally) within A.

A bit more is true. They cannot, in fact, sit independently even relative to a non-trivial common
factor. In other words, no factor of a rank-1 transformation can arise as a relative independent
joining. Since each factor of rank-1 is itself rank-1 it suffices to show the following.

COROLLARY (C) REVISITED. Suppose we have a transformation R : (Y, A,u) — (Y, A, u) and a
factor algebra F C A. Let p(= pr) denote the relative independent joining measure. Let T denote
the transformation

RxR: (Y XY Ax A p) = (Y xY, Ax A, p).
Then T cannot be rank-1.

PROOF. Let S be the coordinate flip map on Y x Y which sends (y,y') — (v',y). This S is
measurable and commutes with R x R. Moreover,

p(STHAXB) = p(BxA) L [ PBIF) A = pld < B).

Since S preserves the measure p, this S € C(T). Now if T is rank-1 then S must leave invariant
each factor algebra of T; in particular, the factor algebra {&, Y} x A. For each A € A the set
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S=HY x A) must be in that same algebra. So there is a set Y x B in that algebra which equals
A xY, p-a.e. Thus p(B) = u(A) and

p(Y x B) = p([AxY]|N[Y x B]) = p(A x B).

Hence

0= p(V x B) — p(A x B) = /Yu — P(AIF)] - P(B|F)dy.

The integrand is a product of two non-negative functions, so P(A|F) must be identically 1 on the
set {P(B|F) > 0}. Since P(B|F) < 1= P(A|F) on this set and p(B) = u(A), we see that P(A|F)
can be none other than the indicator function of this set. Hence A € F. We are forced to conclude

that F = A. O

We mention, without proof, that joint work with Dan Rudolph yields the stronger statement that
rank-1 transformations have unique factors. If T' is rank-1 with factor algebras F and G, then

T|]:§T|g = F=g.

Remark 3. This last comment also concerns corollary (C) of the Weak-closure Theorem. We know
that if a rank-1 T is a cartesian product Ry x Ra, where each (R;;Y:, A;, 1) is a transformation,
then Ry and Rs are relatively prime. Somewhat stronger, they must be disjoint, in the sense of
Furstenberg [3]. (A joining of a transformation Ry with a transformation Rs is an Ry X Re-invariant
measure on (Y7 x Y3, 4y x Ay) possessing marginals py and 9, respectively. Transformations Ry
and R, are disjotnt if the only joining of them is product measure pq X p2.)

Suppose v(-) is a joining of Ry with R, where Ry X R is rank-1. The transformation Ry x Ids,
on Yy x Y,, commutes with Ry x Ry. So Ry x Idy € WCI(Ry X Ry). Consequently, by the same
argument that shows that self-joinings are inherited under weak-limits, v is an (Ry x Ids )-invariant
measure. This, together with the ergodicity of Ry, implies that v = p; X pg, by proposition 2
of [11].

This twofold disjointness coupled with an induction argument, imply that if a countable cartesian
product Ry X Ry X -+ is rank-1, then the {R;}; are mutually disjoint. This means that if v(-) is an
(Ry X Ry x - -+ )-invariant measure on the product space, with respective marginals g (-), a(+), .. .,
then in fact v is product measure

V=1 X gy X -,

This work was done during a most pleasant stay at the University of Toronto during the summer
of 1984; T am grateful to Professor Akcoglu for giving me the opportunity to visit. My thanks also
to his doctoral student Chris Bose, for many thought-provoking conversations and for willingly
suffering early vague versions of this proof.

The writing of this paper was partially supported by grant #DMS850 1519.
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