

Staple!

Calc 3
MAC2313

Prac-W

Prof. JLF King
Touch: 4Aug2016*This is much longer than the actual exam.***W1:** Short answer. Show no work.Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a The plane through points $\mathbf{p} := (0, 1, -3)$, $\mathbf{q} := (5, 0, 1)$ and $\mathbf{r} := (2, 3, 1)$ can be written in form $Ax + By + Cz = T$, for numbers $A = \underline{\dots}$, $B = \underline{\dots}$, $C = \underline{\dots}$, and $T = \underline{\dots}$. The point on this plane which is closest to the origin is $(\underline{\dots}, \underline{\dots}, \underline{\dots})$.

b Write an eqn for the plane which is tangent to $x^2 - y^2 + z^2 = 0$ at the point $(3, 5, 4)$. Write the plane in the form $\alpha[x - x_0] + \beta[y - y_0] + \gamma[z - z_0] = 0$.

Plane: $\underline{\dots} = 0$.

c In \mathbb{R}^3 , let S be the surface

$$6x - 3x^2 + 3 = 2y^2 + z^2.$$

Vector $\mathbf{v} = \underline{\dots} \neq \mathbf{0}$ is $\perp S$ at $Q := (0, 1, 1)$.

In form $A[x - x_0] + B[y - y_0] + C[z - z_0] = 0$, write an equation for the tangent plane to S at Q .

Eqn:

$\underline{\dots}$
Have arranged that A, B, C are **integers** with no common factor; also, that $A \geq 0$.

d The graph of $y = \frac{1}{12x} + x^3$, for $x \in (1, 2)$, has length= $\underline{\dots}$.

e Compute the **arclength** of the curve

$\mathbf{w}(t) := t^2\hat{\mathbf{i}} + [\cos(t) + t\sin(t)]\hat{\mathbf{j}} + [\sin(t) - t\cos(t)]\hat{\mathbf{k}}$ from $t = 0$ to $t = \pi$.

Arclength= $\underline{\dots}$.

f At the point $P := (1, 0)$, the *curvature* of curve $y = \ln(x)$ is $\underline{\dots}$.

g Consider sets Ω and B and fnc $f: \Omega \rightarrow B$. Then Graph(f)= $\underline{\dots}$ (Set-builder notation).

Suppose $g: \mathbb{R}^L \rightarrow \mathbb{R}^N$ is continuous. Then Dim(Graph(g)) = $\underline{\dots}$.

For points $\mathbf{T}_k, \mathbf{S} \in \mathbb{R}^3$, the phrase " $\lim_{k \rightarrow \infty} \mathbf{T}_k = \mathbf{S}$ " means $\lim_{k \rightarrow \infty} \underline{\dots} = \underline{\dots}$.

Ord: **W2:** Short answer. Show no work.Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

h Let $P_0 := (1, 3, 2\pi)$. Compute the gradient of $h(x, y, z) := x^2yz + y^3 \cdot \sin(z)$.

$$[\nabla h](P_0) = \underline{\dots}.$$

i Consider a smooth $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ and $P \in \mathbb{R}^2$. This P is a "**critical point** of f " if **[Imagine 2 blank lines]**.

The "**Hessian matrix** of f , at P " is $\underline{\dots}$.

The **second-derivative test** for whether P is a **saddle-pt**, a **max-pt** or a **min-pt** of f , is: **[Imagine 7 blank lines]**.

j On the circle $x^2 + y^2 = 1^2$, the max-point of $\Gamma(x, y) := x - 2y$ is $(\underline{\dots}, \underline{\dots})$.

k Let $f(x, y) := x - 14y$. Subject to the constraint that $y^2 = x$, compute the location (x_0, y_0) of a **global maximum** of f , and compute the location (x_1, y_1) of a **global minimum** of f .

$$\text{Max} = (\underline{\dots}, \underline{\dots}); \text{Min} = (\underline{\dots}, \underline{\dots}).$$

l Give an example of a *polynomial* f which has a saddle-point at $P := (-5, 2)$.

$$f(x, y) = \underline{\dots}.$$

m Determinant of $M := \begin{bmatrix} 3 & 4 & 5 \\ 0 & 5 & -1 \\ 0 & 7 & -2 \end{bmatrix}$ is $\underline{\dots}$.

The characteristic-poly of M is $Ax^3 + Bx^2 + Cx + D$, where $B = \underline{\dots}$ and $C = \underline{\dots}$.

n The **determinant** of 1×1 matrix $[z]$ is z . Recursively, the **determinant** of $N \times N$ matrix

$$B := \begin{bmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,N} \\ c_{2,1} & c_{2,2} & \dots & c_{2,N} \\ \vdots & \vdots & \dots & \vdots \\ c_{N,1} & c_{N,2} & \dots & c_{N,N} \end{bmatrix}$$

is **[Imagine 9 blank lines]**.

W3: A cylindrical soup-can has radius r and height y ; so its volume is $\pi \cdot r^2 \cdot y$. Per square-inch, the metal of the top and the bottom cost thrice as much as the metal of the side. Thus its cost function is

$$f(r, y) = \text{_____}.$$

Subject to the volume being held constant (say, 10 cubic inches), what is the *ratio* of y/r that minimizes the cost of the can? Use Lagrange multipliers. Let g denote the specifier fnc that you choose. Compute the three Lagrange equations: [The first eqn. is the constraint eqn.]

$$C_g: \text{_____} = \text{_____}.$$

$$L_r: \text{_____} = \text{_____}.$$

$$L_y: \text{_____} = \text{_____}.$$

$$\text{Solve the system to compute } \frac{y}{r} = \text{_____}.$$

OYOP: *In grammatical English sentences, write your essay on every third line (usually), so that I can easily write between the lines. Do not restate the question.*

W4: Find all points $P = (x, y, z)$ which extremize (maximize or minimize) function $\varphi(P) := -6x + 5y - 3z$, subject to the condition that $P = (x, y, z)$ is on the radius-1 **circle** lying in the x, z -plane and centered at the origin. Calling our Lagrange multipliers α and β , write the constraint function and equation corresponding to α :

$$g(P) := \text{_____}.$$

$$C_g: \text{_____} = \text{_____}.$$

Write the constraint function and equation corresponding to β :

$$h(P) := \text{_____}.$$

$$C_h: \text{_____} = \text{_____}.$$

The three Lagrange equations are:

$$L_x: \text{_____} = \alpha \cdot \text{_____} + \beta \cdot \text{_____}.$$

$$L_y: \text{_____} = \alpha \cdot \text{_____} + \beta \cdot \text{_____}.$$

$$L_z: \text{_____} = \alpha \cdot \text{_____} + \beta \cdot \text{_____}.$$

Show all work in setting up and solving equations (C_g, C_h, L_x, L_y, L_z). Please list:

All **max**-points: $(\text{_____}, \text{_____}, \text{_____})$;

All **min**-points: $(\text{_____}, \text{_____}, \text{_____})$;

End of Prac-W

W1: _____ 180pts

W2: _____ 85pts

W3: _____ 40pts

W4: _____ 85pts

Total: _____ 390pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor (or his colleague)."*
Name/Signature/Ord

Ord: _____