

Hello. Essays violate the CHECKLIST at *Grade Peril!* Exam is due **5PM, Tuesday, 10Oct2006**, slid under LIT402. Please email me afterwards.

W1: Short answer: Show no work. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a The unique integer $k \in (-90..90]$ with

$$\begin{aligned} k &\equiv_4 27, \\ k &\equiv_9 19, \\ k &\equiv_5 8, \quad \text{is } k = \dots \end{aligned}$$

An explicit ring-iso $\mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_5 \hookrightarrow \mathbb{Z}_{180}$ is

$$(x, y, z) \mapsto \langle 45Ax + 20By + 36Cz \rangle_{180}, \quad \text{where}$$

$$A = \dots \in [0..4], B = \dots \in [0..9], C = \dots \in [0..5].$$

b The last two digits of $K := 19^{7^{2157}}$ are \dots .

c Writing $100!$ in decimal, it ends (on the right) with zeros. \dots

d $\sum_{n=1}^{\infty} \mu(n!) = \dots$

Essay questions: Write in complete sentences and also fill-in the blanks. Each essay starts a new page.

W2: Consider the inequalities

$$\frac{B}{\sqrt{\frac{1}{2} + n}} \cdot 4^n \stackrel{1*}{\geq} \binom{2n}{n} \stackrel{2*}{\geq} \frac{A}{\sqrt{n}} \cdot 4^n.$$

Setting $B := 1$ and $A := \frac{1}{2}$, give induction proofs that (1*) and (2*) hold for all posints n . (Can you improve the result?)

W3: [Möbius] Let $\text{cis}(\theta) = \cos(\theta) + i\sin(\theta)$, the complex number $e^{i\theta}$. In \mathbb{C} , the N^{th} -roots of unity are $\omega_j := \text{cis}(j \cdot \frac{2\pi}{N})$, for $j = 1, 2, \dots, N$.

An N^{th} -root ω is **primitive** if, for all $k < N$, this ω is *not* a k^{th} -root of unity. Use V_N for the set of primitive N^{th} -roots. **i** Prove that $|V_N| = \varphi(N)$.

ii Define a complex poly

$$\mathbf{C}_N(z) := \prod_{\omega \in V_N} [z - \omega].$$

Prove that each coeff of \mathbf{C}_N is real. [Eg: $\mathbf{C}_1(z) = z - 1$. $\mathbf{C}_2(z) = z + 1$. $\mathbf{C}_3(z) = z^2 + z + 1$.]

iii

Let $F_N(z) := z^N - 1$. Prove $F_N = \prod_{d \mid N} \mathbf{C}_d$, where the product is taken over all positive divisors of N . Find a way to use the *Möbius inversion formula* to write

$$\dagger: \quad \mathbf{C}_N(z) = \prod_{d \mid N} \left[\begin{array}{c} \text{Something involving} \\ N, d \text{ and } F \end{array} \right]$$

in terms of the Möbius μ fnc. Use this to show that \mathbf{C}_N is an *intpoly*!

Use your formula to write $\mathbf{C}_{24}(z)$ in std. form. (What degree do we expect it to have?)

For posint L , write $\mathbf{C}_{3^L}(z)$ in std. form.

W4: Let p_n denote the n^{th} -prime. Use Chebyshev's Thm (5.1 on P.75 of Shoup) to prove that there exists a constant $K \geq 1$ so that

$$\forall n \in [2.. \infty): \quad p_n \leq K \cdot [n \cdot \log(n)].$$

[Hint: What is $\pi(p_n)$?] Can you prove a stronger result? (We haven't proved PNT, so we don't have that.)

End of Home-W

W1: _____ 80pts

W2: _____ 85pts

W3: _____ 85pts

W4: _____ 85pts

Total: _____ 335pts

HONOR CODE: "I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." **Name/Signature/Ord**

Ord: _____

Ord: _____

Ord: _____