

Team: _____

Sets and Logic
MHF3202 8768

Home-W

Prof. JLF King
Touch: 6May2016

Due **BoC, Mon, 06Feb2012**, Please *fill-in* every *blank* on this sheet. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

For the two essay questions, carefully **TYPE** triple-spaced, grammatical, solutions. I suggest **LATEX**. Essays violate the CHECKLIST at Grade Peril...

W1: Let $L(k) := [5^{2k}] - 1$. By induction on k , prove that $\forall k \in \mathbb{N}: L(k) \bullet 3$.

W2: Interval-of-integers $\mathbf{J} := [101..200]$ has 99 elements. A subset $S \subset \mathbf{J}$ is **Big** if $|S| = 51$. Subset $S \subset \mathbf{J}$ is **Perfect** if there exist *distinct* members $x, y \in S$ st. $x + y = 300$.

Prove that **Big \Rightarrow Perfect**. [Hint: PHP. Carefully specify what your pigeon-holes are.]

W3: Henceforth, show no work. Simply *fill-in* each *blank* on the problem-sheet.

a Define $G:[1..12] \circlearrowright$ where $G(n)$ is the number of letters in the n^{th} Gregorian month. So $G(2) = 8$, since the 2nd month is “February”. The only fixed-point of G is _____. The set of posints k where $G^{sk}(12) = G^{sk}(7)$ is _____.

b LBolt: $\text{Gcd}(70, 42) = \text{_____} \cdot 70 + \text{_____} \cdot 42$.

So (LBolt again) $G := \text{Gcd}(70, 42, 30) = \text{_____}$ and

$\text{_____} \cdot 70 + \text{_____} \cdot 42 + \text{_____} \cdot 30 = G$.

c As polynomials in $\Gamma := \mathbb{Z}_{11}[x]$, let

$$B(x) := x^4 - 4x^3 + 2x^2 - 3x - 2;$$

$$C(x) := 2x^3 - 5x + 5.$$

Write t.fol polys, using coeffs in $[-5..5]$; use \equiv for equality in \mathbb{Z}_{11} and in Γ . Compute quotient and remainder polys, $q(x) \equiv \text{_____} \& r(x) \equiv \text{_____}$,

with $B \equiv [q \cdot C] + r$ and $\text{Deg}(r) < \text{Deg}(C)$.

Let $D := \text{Gcd}(B, C)$. **Monic** $D(x) \equiv \text{_____}$.

Compute polys $S(x) \equiv \text{_____}$,

$T(x) \equiv \text{_____}$ st. $[S \cdot B] + [T \cdot C] \equiv D$.

d

$\forall x, z \in \mathbb{Z}$ with $x < z$, $\exists y \in \mathbb{Z}$ st.: $x < y < z$. **T** **F**

$\forall x, z \in \mathbb{Q}$ with $x \neq z$, $\exists y \in \mathbb{R}$ st.: $x < y < z$. **T** **F**

For all sets Ω , there exists a fnc $f: \mathbb{R} \rightarrow \Omega$. **T** **F**

End of Home-W

W1: _____ 65pts

W2: _____ 65pts

W3: _____ 120pts

Total: _____ 250pts

HONOR CODE: “I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).” **Name/Signature/Ord**

Ord:

Ord:

Ord: