

NT-Cryptography
MAT4930 7554

Home-W

Prof. JLF King
Touch: 2Jul2018

This take-home is due at the **BoC of Wedn, 16Feb2011**. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed. Fill-in all blanks on this sheet! (*Handwriting is fine; don't bother to type*).

For essay questions (W1) and (W2), carefully typeset (TeX/LaTeX is recommended) a **double-or-triple-spaced** essay solving the problem. (Do **not** re-state the problem! Please start each essay on a new sheet of paper.

W1: The building block of a cryptosystem uses *N-boxy* numbers, for large values of *N*. (Defns are below.)

i Prove: For each positive integer *N*, that there exists an *N-boxy* number.

ii Produce (with proof, 'natch) a 5-boxy number $V = \dots$. (A little extra credit: Can you prove that your V is the *smallest* 5-boxy number?)

Defns. An integer S is **squarish** if it is divisible by some member of $\{4, 9, 16, 25, 36, \dots\}$; otherwise S is **square-free**. (E.g. 0, -8, 600 are squarish, and 1, 130, -77 are square-free.)

For N, S posints, our S is "***N*-boxy**" if each member of $\{S + j\}_{j=0}^{N-1}$ is squarish. E.g., $S=8$ is 2-boxy but not 3-boxy. Ditto $S=27$.

W2: Suppose the letters A F H M N U have frequencies $\frac{12}{170}, \frac{46}{170}, \frac{38}{170}, \frac{18}{170}, \frac{15}{170}, \frac{41}{170}$, respectively. Construct the unique Huffman prefix-code with these frequencies; at each coalescing, use **0** for the less-probable branch and **1** for the more-probable. **Draw** the Huffman tree (large!). Label the branches and leaves with bits and letters. The name HUFFMAN encodes to

Examining the tree, what kind of *Being* is HUFFMAN?

Answering the question "What're y'all?", message 10100010101001110100110111010! decodes to !

W3: Show no work.

a Sequence $\vec{s} := (s_n)_{n=-\infty}^{\infty}$ is defined by recurrence

$$s_{n+2} = 2s_{n+1} + 3s_n, \quad \text{with initial-conditions} \\ s_1 := -1 \text{ and } s_0 := 7.$$

With $\mathbf{v}_n := \begin{bmatrix} s_{n+1} \\ s_n \end{bmatrix}$, matrix $\mathbf{M} := \dots$ satisfies

$\forall k: \mathbf{v}_k = \mathbf{M}^k \mathbf{v}_0$. Henceforth in ring $\mathbb{Z}_{100} = [0..100)$, power $\mathbf{M}^{512} \equiv \dots$

b Let $\tau()$ and $\sigma()$ be the number-of and sum-of divisors, resp.. Then $\tau(2700) = \dots$

and $\sigma(2700) = \dots$ (Please leave each answer as a product of three integers.)

c As polynomials in $\Gamma := \mathbb{Z}_7[x]$, let

$$B(x) := x^4 - 2x^3 + x - 2; \\ C(x) := x^3 + 3x^2 - 3x.$$

Write t.fol polys, using coeffs in $[-3..3]$; use \equiv for equality in \mathbb{Z}_7 and in Γ . Compute quotient and remainder polys, $q(x) \equiv \dots$ & $r(x) \equiv \dots$,

with $B \equiv [q \cdot C] + r$ and $\text{Deg}(r) < \text{Deg}(C)$.

Let $D := \text{Gcd}(B, C)$. **Monic** $D(x) \equiv \dots$

Compute polys $S(x) \equiv \dots$,

$T(x) \equiv \dots$ st. $[S \cdot B] + [T \cdot C] \equiv D$.

End of Home-W

W1: _____ 140pts

W2: _____ 85pts

Poorly stapled, or missing names or team number: _____ 75pts

Not double-spaced: _____ -15pts

Total: _____ 300pts

HONOR CODE: "I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." Name/Signature/Ord

Ord: _____

Ord: _____

Ord: _____