

Sets and Logic
MHF3202 2787

Home-W

Prof. JLF King
Touch: 4Aug2016

Due **BoC, Monday, 18Nov2013.** Please *fill-in* every *blank* on this sheet. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

W1: Show no work here. Simply fill-in each blank on the problem-sheet.

a Suppose **R** is a binrel on set Ω . Then statement “Relation $\mathbf{R} \circ \mathbf{R}^{-1}$ equals $\mathbf{R}^{-1} \circ \mathbf{R}$ ” is T F

b Given sets with cardinalities $|B| = 8$ and $|E| = 5$, the number of non-constant fncs in B^E is

c Let \mathcal{P}_∞ denote the family of all *infinite* subsets of \mathbb{N} . Define relation \approx on \mathcal{P}_∞ by: $A \approx B$ IFF $A \cap B$ is infinite. Stmt “This \approx is an equivalence-relation” is: T F

d A bijection $f:[5,6] \leftrightarrow (0,1)$ is: $f(5) :=$, ;
 $f(\text{_____}) :=$, for each $k \in$, ;
and $f(x) :=$, for each $x \in (5,6] \setminus C$,
where $C :=$, .

Your 2 essay(s) must be TYPESET, and Double or Triple spaced. Use the Print/Revise cycle to produce good, well thought out, essays. Start each essay on a **new** sheet of paper. Do not restate the problem; just solve it.

W2: Prove that the map $f:\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}_+$, with $f(k,n) := 2^k \cdot [1 + 2n]$, is injective. Now prove that it is surjective.

W3: The CONSEQUEDAY ENIGMA:

i Over a 30 day month, SeLoidian Bubba posts at least one soln per day, for a total of 42 solns. PROVE:

There is a period of consecutive days over which he posted exactly $g := 18$ solutions.

[g for “Guaranteed”.] NOTE: In your proof, let s_n denote the number of solns posted that month by the end of day n . By hyp., then,

$$1 \leq s_1 < s_2 < \dots < s_{30} = 42.$$

Let $t_n := 18 + s_n$. Using this notation, write a complete, rigorous proof, proving any lemmas you need/want. [Hint: You may find it easier to first show that $g=17$ is guaranteed. Then you'll see how to show that $g=18$ is guaranteed.]

ii Generalize: Replace 30 by D , replace 42 by P ; we now consider posints with $D < P$. Give a formula for the *largest* value, call it $\Gamma(D, P)$, for which your proof guarantees the values $g = 1, 2, 3, \dots, \Gamma(D, P)$.

iii For fixed D and P , let $\mathcal{M}(D, P)$ be the *set* of guaranteed posints g . What can you tell me about the structure of $\mathcal{M}(D, P)$? Conjectures? Proofs? Computer experiments? (I don't know the structure. What can you teach me?)

End of Home-W

W1: W2: W3: Total:

95pts

35pts

115pts

245pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).* Name/Signature/Ord

Ord: Ord: Ord: