

Staple!

Team W

Sets and Logic
MHF3202 7860

Home-W

Prof. JLF King
Touch: 4Aug2016

Due **BoC, Monday, 23Feb2015**, with *all team-members present*. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

This sheet is “Page $1/N$ ”, and you’ve labeled the rest as “Page $2/N$ ”, …, “Page N/N ”. Fill-in [large handwriting] *on this problem-sheet* all of your blanks.

W1: Henceforth, show no work. Simply fill-in each blank on the problem-sheet.

a Define $G:[1..12] \rightarrow \mathbb{Z}$ where $G(n)$ is the number of letters in the n^{th} Gregorian month. So $G(2) = 8$, since the 2nd month is “February”. The only fixed-point of G is \dots . The set of posints k where $G^{\circ k}(12) = G^{\circ k}(7)$ is \dots

\dots

b We consider binrels on $\Omega := \text{Stooges} := \{M, L, C\}$. There are **Anti-reflexive** binrels, and **Reflexive** binrels, and **Symmetric** binrels. The number of **strict total-orders** is \dots

c Suppose \mathbf{R} is a binrel on set Ω . Then statement “Relation $\mathbf{R} \circ \mathbf{R}^{-1}$ equals $\mathbf{R}^{-1} \circ \mathbf{R}$ ” is \mathbf{T} \mathbf{F}

OYOP: Your 2 essay(s) must be TYPESET, and Double or Triple spaced. Use the Print/Revise cycle to produce good, well thought out, essays. Start each essay on a new sheet of paper. Do not restate the problem; just solve it.

On the essays: I ask that you do more than what I ask you to do.

W2: Note $f(n) := \frac{1}{2} \cdot [11^n + 15^n]$ is an integer. Prove, for each odd $n \geq 3$, that $f(n)$ is composite. [Hint: Look at $f(n) \pmod{\text{something}}$.]

[Are all the hypotheses necessary, or can some be weakened?]

W3: [A dodecahedron is a convex polyhedron having 12 faces, 20 vertices and 30 edges; the faces are pentagons.] Two vertices of a regular dodecahedron are **neighbors** if they are distinct vertices of a common pentagon. [Each vertex has $[3 \cdot 4] - 3 = 9$ neighbors.] Write $v \sim w$ to indicate that v and w are neighbors. Easily, \sim is symmetric, and anti-reflexive. You can check that \sim is not transitive.

A **labeling** of a regular dodecahedron assigns, to each vertex, a **positive integer**. A labeling is **legal** IFF no pair $v \sim w$ of vertices is assigned the same label.

i Prove there is no legal labeling with vertex sum [the sum of the 20 labels] equaling 59.

ii Let $\mathcal{S} \subset \mathbb{Z}_+$ be the **set** of sums obtainable from legal-labelings. Characterize, with proof, \mathcal{S} ; you will likely need to construct some particular legal-labelings. [You showed, above, that $\mathcal{S} \not\geq 59$.]

End of Home-W

W1: $\underline{\hspace{2cm}} \underline{\hspace{2cm}}$ 85pts

W2: $\underline{\hspace{2cm}} \underline{\hspace{2cm}}$ 75pts

W3: $\underline{\hspace{2cm}} \underline{\hspace{2cm}} \underline{\hspace{2cm}}$ 105pts

Ouch!, scratch work handed-in; OR Poorly stapled. : $\underline{\hspace{2cm}} \underline{\hspace{2cm}}$ -20pts

Total: $\underline{\hspace{2cm}} \underline{\hspace{2cm}} \underline{\hspace{2cm}}$ 265pts

HONOR CODE: “I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).” **Name/Signature/Ord**

Ord: $\underline{\hspace{2cm}} \underline{\hspace{2cm}} \underline{\hspace{2cm}}$

Ord: $\underline{\hspace{2cm}} \underline{\hspace{2cm}} \underline{\hspace{2cm}}$

Ord: $\underline{\hspace{2cm}} \underline{\hspace{2cm}} \underline{\hspace{2cm}}$