

Sets and Logic
MHF3202 8768

Home-W

Prof. JLF King
Touch: 4Oct2017

Due **BoC, Monday, 10Feb2014**, Please *fill-in* every blank on this sheet. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed. *In grammatical English sentences, TYPE your essays on every third line (usually), so that I can easily write between the lines. Do not restate the question.*

W1: On a 9×9 chessboard, 37 rooks are placed. Prove there exists a **friendly** 5-set of rooks. [I.e, on 5 distinct rows and on 5 distinct columns.] [Hint: PHP] Illustrate the concepts in your proof with *large, useful Pictures*.

W2: Define a sequence $\vec{b} = (b_0, b_1, b_2, \dots)$ by $b_0 := 0$ and $b_1 := 3$ and

$$\dagger: \quad b_{n+2} := 7b_{n+1} - 10b_n, \quad \text{for } n = 0, 1, \dots$$

Use induction to prove, for each natnum k , that

$$\ddagger: \quad b_k = 5^k - 2^k.$$

Further: Given recurrence (\dagger) and initial conditions, explain how you could have discovered/computed the numbers 5 and 2 in the (\ddagger) formula.

Can you generalize to getting a (\ddagger) -like formula when the recurrence is $b_{n+2} := Sb_{n+1} - Pb_n$, for arbitrary real-number coefficients S and P ?

W3: Henceforth, show no work. Simply fill-in each blank on the problem-sheet.

a The number of permutations of "PREPPER" is

b The coeff of x^7y^{12} in $[5x + y^3 + 1]^{30}$ is

c $\forall x, z \in \mathbb{Z}$ with $x < z$, $\exists y \in \mathbb{Z}$ st.: $x < y < z$. $T \quad F$
 $\forall x, z \in \mathbb{Q}$ with $x \neq z$, $\exists y \in \mathbb{R}$ st.: $x < y < z$. $T \quad F$

For all sets Ω , there exists a fnc $f: \mathbb{R} \rightarrow \Omega$. $T \quad F$

d Compute the real $\alpha =$ such that

$$3^\alpha \cdot \sum_{k=0}^{4000} \binom{4000}{k} 2^k = \sum_{j=0}^{1995} \binom{1995}{j} 8^j.$$

[Hint: The Binomial Theorem]

e The number of ways of picking 42 objects from 70 types is $\binom{42}{70} \frac{\text{Binom}}{\text{coeff}} \left(\dots \right)$. And

$$\binom{42}{70} = \binom{N}{T}, \text{ where } N = \dots \neq 42, \text{ and } T = \dots$$

End of Home-W

W1: _____ 95pts

W2: _____ 75pts

W3: _____ 95pts

Ouch! scratch work
handed-in; OR

Poorly stapled. : _____ -20pts

Total: _____ 265pts

HONOR CODE: "I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." *Name/Signature/Ord*

Ord: _____

Ord: _____

Ord: _____