

Sets and Logic
MHF3202 09EH

Class-W

Prof. JLF King
Wednesday, 20Nov2019**W1:** Short answer. Show no work.Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0 \neq$ Empty-word.**a** A *minimum* requirement for an LOR (letter-of-recommendation) from Prof. K is two courses. Circle:

Yes True Darn tootin'!

b Let $T(m) := \frac{1}{2}m[m+1]$ be the m^{th} triangular number. An explicit bijection $F: \mathbb{N} \times \mathbb{N} \leftrightarrow [-4.. \infty)$ is

$$F(n, k) := \boxed{\dots}$$

c A “Cantor’s-Hotel” type bijection $f: (5, 6] \leftrightarrow (0, 1)$ is:
 $f(\boxed{\dots}) := \boxed{\dots}$, for each posint n ;
 $\boxed{\dots} \quad \boxed{\dots}$
and $f(x) := \boxed{\dots}$, for each $x \in (5, 6] \setminus C$,
where $C := \boxed{\dots}$.**d** On \mathbb{R}_+ , define several relations: Say that $x \mathcal{R} y$ IFF $y - x < 17$. Define \mathcal{P} by: $x \mathcal{P} y$ IFF $x^{\log(y)} = 5$.Say that $x \mathcal{I} y$ IFF $x + y$ is irrational.Use \bullet for the “divides” relation on the positive integers: $k \bullet n$ iff there exists a posint r with $rk = n$.**d₁** Please those of the following relations which are *transitive* (on their domain of defn).

$$\neq \quad \bullet \quad \leq \quad \mathcal{R} \quad \mathcal{P} \quad \mathcal{I}$$

d₂ the *symmetric* relations:

$$\neq \quad \bullet \quad \leq \quad \mathcal{R} \quad \mathcal{P} \quad \mathcal{I}$$

d₃ the *reflexive* relations:

$$\neq \quad \bullet \quad \leq \quad \mathcal{R} \quad \mathcal{P} \quad \mathcal{I}$$

e Let \mathcal{P}_∞ denote the family of all *infinite* subsets of \mathbb{N} . Define relation \approx on \mathcal{P}_∞ by: $A \approx B$ IFF $A \cap B$ is infinite. Stmt “*This \approx is an equivalence-relation*” is: T F**f** The number of permutations of “PREPPER”, as a multinomial coefficient, is as a number.OYOP: In grammatical English *sentences*, write your essay on every 2nd line (usually), so that I can easily write between the lines.**W2:** Between sets $\mathbf{A} := \mathbb{Z}_+$ and $\mathbf{\Omega} := \mathbb{N}$, consider injections $f: \mathbf{A} \hookrightarrow \mathbf{\Omega}$ and $g: \mathbf{\Omega} \hookrightarrow \mathbf{A}$, defined by

$$f(z) := 3z \quad \text{and} \quad g(\beta) := \beta + 5.$$

The S-B thm produces a set $Y \subset g(\mathbf{\Omega}) \subset \mathbf{A}$ so that, letting $X := \mathbf{A} \setminus Y$, function $\theta: \mathbf{A} \hookrightarrow \mathbf{\Omega}$ is a *bijection*, where

$$*: \quad \theta|_X := f|_X \quad \text{and} \quad \theta|_Y := g^{-1}|_Y.$$

i Prove, for these particular injections, that there is only one set Y which makes (*) a bijection. [Does an orbit-picture help?]**ii** Compute $\theta(56) = \boxed{\dots}$ and $\theta(83) = \boxed{\dots}$, drawing the appropriate part of (f, g) -orbit pictures.**W1:** _____ 135pts**W2:** _____ 55pts**Total:** _____ 190pts

NAME: _____ Ord: _____

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: _____