

W4: Short answer. Show no work.

Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a $\mathcal{P}(\mathcal{P}(\text{3-stooges}))$ has many elements.

b Given sets with cardinalities $|B| = 8$ and $|E| = 5$, the number of non-constant fncs in B^E is

c On \mathbb{R}_+ , define several relations: Say that $x\mathcal{R}y$ IFF $y - x < 17$. Define \mathcal{P} by: $x\mathcal{P}y$ IFF $x^{\log(y)} = 5$.

Say that $x\mathcal{I}y$ IFF $x + y$ is irrational.

Use \mid for the “divides” relation on the positive integers: $k \mid n$ iff there exists a posint r with $rk = n$.

c₁ Please those of the following relations which are *transitive* (on their domain of defn).

\neq \mid \leq \mathcal{R} \mathcal{P} \mathcal{I}

c₂ the *symmetric* relations:

\neq \mid \leq \mathcal{R} \mathcal{P} \mathcal{I}

c₃ the *reflexive* relations:

\neq \mid \leq \mathcal{R} \mathcal{P} \mathcal{I}

d We consider binrels on $\Omega := \text{Stooges} := \{M, L, C\}$.

There are **Anti-reflexive** binrels,

and **Reflexive** binrels,

and **Symmetric** binrels. The

number of **strict total-orders** is

e Define $G:[1..12]\circlearrowright$ where $G(n)$ is the number of letters in the n^{th} Gregorian month. So $G(2) = 8$, since the 2nd month is “February”. The only fixed-point of G is The set of posints k where $G^{\circ k}(12) = G^{\circ k}(7)$ is

[January, February, March, April, May, June, July, August, September, October, November, December]

easily write between the lines. Please number the pages “1 of 57”, “2 of 57”... (or “1/57”, “2/57”...) I suggest you put your name on each sheet.

W5: An **Lmino** (pron. “ell-mino”) comprises three squares in an “L” shape (all four orientations are allowed). For natnum N , let \mathbf{R}_N denote the $3 \times N$ board: I.e., is the \mathbf{R}_5 board. Prove:

Theorem: When N is odd, then board \mathbf{R}_N is not Lmino-tilable.

You will likely want to first *state* and *prove* a Lemma. Now use appropriate induction on N to prove the thm. Also: *Illustrate your proof* with (probably several) large, *labeled* pictures.

End of Class-W

W4: _____ 116pts

W5: _____ 75pts

Total: _____ 191pts