

OYOP: *In grammatical English sentences, write your essay on every third line (usually), so that I can easily write between the lines. Do not restate the question.*

W1: Prop. Q_k : There are at least k prime numbers.

Prove, for $k \in \mathbb{Z}_+$, that $(Q_k) \Rightarrow (Q_{k+1})$. For free, you may use that each posint factors as a product of primes. [Hint: You likely want to state and prove a coprimeness lemma first.]

W2: Short answer. Show no work.

Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a Define fncs $G, P: [1..12] \rightarrow \mathbb{Z}$, where $G(n)$ is the number of letters in the n^{th} Gregorian month [so $G(2) = 8$; the 2nd month “February” has 8 letters], and $P(n) := 13 - n$.

The set of posints k with $G^{\circ k}(1) = G^{\circ k}(2)$

is

Let $f := P \circ G$. Then $f^{\circ 2}(11) = \boxed{\dots}$

b Mod $K := 229$, the recipr. $\langle \frac{1}{45} \rangle_K = \boxed{\dots} \in [0..K]$.

[Hint: $\frac{1}{45} = 5 - 45x$ for some $x \in [0..K]$ solves $5 - 45x \equiv_K 8$.]

c Posints $L = \boxed{\dots}$, $N = \boxed{\dots}$, $\alpha = \boxed{\dots}$, $\beta = \boxed{\dots}$, are st. $\alpha \equiv_L \beta$, yet $N^\alpha = \boxed{\dots}$ is **not** \equiv_L to $N^\beta = \boxed{\dots}$.

d As polynomials in $\Gamma := \mathbb{Z}_7[x]$, let

$$B(x) := x^4 - 2x^3 + x - 2;$$

$$C(x) := x^3 + 3x^2 - 3x.$$

Write t.fol polys, using coeffs in $[-3..3]$; use \equiv for equality in \mathbb{Z}_7 and in Γ . Compute quotient and remainder polys,

$$q(x) \equiv \boxed{\dots} \quad \& \quad r(x) \equiv \boxed{\dots},$$

with $B \equiv [q \cdot C] + r$ and $\text{Deg}(r) < \text{Deg}(C)$.

$$\text{Let } D := \text{Gcd}(B, C). \quad \text{Monic } D(x) \equiv \boxed{\dots}.$$

Compute polys $S(x) \equiv \boxed{\dots}$,

$$T(x) \equiv \boxed{\dots} \quad \text{st. } [S \cdot B] + [T \cdot C] \equiv D.$$

e Write the free vars in each of these expressions.

$$\exists n \in \mathbb{N}: f(n) \in \bigcup_{\ell=r-4}^{r+7} \underbrace{\{x \in \mathbb{Z} \mid \ell \cdot n \equiv_5 x^2\}}_{E1} \underbrace{\text{E3}}_{E2}$$

$$E1: \boxed{\dots} \quad E2: \boxed{\dots} \quad E3: \boxed{\dots}.$$

W1: _____ 45pts

W2: _____ 90pts

Total: _____ 135pts