

Sets and Logic
MHF3202 2787

Class-W

Prof. JLF King
6Sep2015

OYOP: For your 2 Essays: *Write your grammatical English sentences on every third line, so that I can easily write between the lines. Start each essay on a new sheet of paper.*

W1: Let $\mathbf{J} := [0, 1]$. You may use, without proof, the Schröder-Bernstein thm and the following.

a₁: $\mathbb{R} \asymp \{0, 1\}^{\mathbb{N}}$. **a₂:** $\mathbb{N} \times \mathbb{R} \asymp \mathbb{R}$.

a₃: For each three sets Ω, B, D : $\Omega^{B \times D} \asymp [\Omega^B]^D$.

a₄: The set $S := \mathbb{Q} \cap \mathbf{J}$ is countable.

Prove that $\mathbf{C}(\mathbf{J})$, the set of continuous functions $\mathbf{J} \rightarrow \mathbb{R}$, is bijective with \mathbb{R} . Cite each (a_i) where you use it. Specify what Ω, B, D are, when you apply (a₃). [Note: Does your proof split into easily-understood lemmas?]

W2: Between sets $\mathbf{A} := \mathbb{Z}_+$ and $\Omega := \mathbb{N}$, consider injections $f: \mathbf{A} \hookrightarrow \Omega$ and $g: \Omega \hookrightarrow \mathbf{A}$, defined by

$$f(z) := 3z \quad \text{and} \quad g(\beta) := \beta + 5.$$

The S-B thm produces a set $Y \subset g(\Omega) \subset \mathbf{A}$ so that, letting $X := \mathbf{A} \setminus Y$, function $\theta: \mathbf{A} \hookrightarrow \Omega$ is a bijection, where

$$*: \quad \theta|_X := f|_X \quad \text{and} \quad \theta|_Y := g^{-1}|_Y.$$

i Prove, for these particular injections, that there is only one set Y which makes (*) a bijection. [Does an orbit-picture help?]

ii Compute $\theta(56) = \underline{\dots}$ and $\theta(83) = \underline{\dots}$, drawing the appropriate part of (f, g) -orbit pictures.

W3: Short answer. Show no work.

Please write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

a Repeating decimal $0.3\overline{12}$ equals $\frac{n}{d}$, where posints $n \perp d$ are $n = \underline{\dots}$ and $d = \underline{\dots}$.

b An explicit bijection $F: \mathbb{N} \times \mathbb{N} \leftrightarrow [-4.. \infty)$ is $F(n, k) := \underline{\dots}$.

c Let \mathcal{P}_∞ denote the family of all *infinite* subsets of \mathbb{N} . Define relation \approx on \mathcal{P}_∞ by: $A \approx B$ IFF $A \cap B$ is infinite. Stmt “This \approx is an equivalence-relation” is: $T \quad F$

d Each three sets Ω, B, C engender a natural bijection, $\Theta: \Omega^{B \times C} \hookrightarrow [\Omega^B]^C$, defined, for each $f \in \Omega^{B \times C}$, by

$$\Theta(f) := \left[c \mapsto \underline{\dots} \right].$$

Its inverse-map $\Upsilon: [\Omega^B]^C \hookrightarrow \Omega^{B \times C}$ has, for $g \in [\Omega^B]^C$, $\Upsilon(g) := \left[(b, c) \mapsto \underline{\dots} \right]$.

End of Class-W

W1: 75pts

W2: 60pts

W3: 110pts

Total: 245pts