

Plex
MAA4402 8436

Class-W

Prof. JLF King
Wedn, 27Oct2021

Welcome! Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g, write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

Write unambiguously e.g, $1/a+b$ should be *bracketed* either $[1/a] + b$ or $1/[a+b]$, as appropriate. (Be careful with **negative** signs!) Write **DNE** if the object does not exist or the operation cannot be performed. NB: $\mathbf{DNE} \neq \{ \} \neq 0$.

W1: Short answer. Show no work.

10 **a** Prof. King wears bifocals, and cannot read small handwriting. **Circle** one: **True!** **Yes!** **Who??**

15 **b** Prof. King thinks that submitting a ROBERT LONG PRIZE ESSAY [typically 2 prizes, \$500 total] is a *really good idea*. A ten-page essay is fine. Date for the emailed-PDF is Sunday, March 27, 2022.

Circle: **Yes** **True** **Résumé material!**

25 **c** Define $f(x+iy) := xy + ix$. Let **L** be the line-segment from the origin to $2+i$. Then $\int_L f(z) dz =$ _____.

30 **d** Let **C** be SCC $\text{Sph}_3(\mathbf{i})$, a circle of radius 3. Value $\oint_C \frac{e^{3z}}{[z-2]^5} dz =$ _____.

[Answer may be written as a product, using powers and factorials.]

30 **e** Fnc $u(x,y) := 2xy + x$ has harmonic conjugate $v(x,y) =$ _____.

W2: Short answer; fill-in the 5 blanks.

Consider the logarithmic spiral, **S**, turning CCW as it spirals out to ∞ , crossing the \mathbb{R} -axis at points $\{3^n\}_{n \in \mathbb{Z}}$.

i Similar to what we did in class, naturally parametrize **S** by $\sigma: \mathbb{R} \rightarrow \mathbb{C}$ of form $\sigma(t) = e^{M \cdot t}$, where $M =$ _____, with $\sigma(-2\pi) = \frac{1}{3}$, $\sigma(0) = 1$, $\sigma(2\pi) = 3$, ..., $\sigma(2\pi \cdot n) = 3^n$.

ii Let **A** be the Arclength of one turn of the spiral, starting at $3 \in \mathbb{R}$, ending at $9 \in \mathbb{R}$. Set up the specific integral $\mathbf{A} = \int_{\alpha}^{\beta} f(t) dt$, where $f(t) =$ _____, with $\alpha =$ _____ and $\beta =$ _____.

iii Computing the

integral gives number **A**= _____.

OYOP: In grammatical English **sentences**, write your essay on every 2nd line (usually), so I can easily write between the lines.

W3: Below, $h: \mathbb{C} \rightarrow \mathbb{C}$, and **S** $\subset \mathbb{C}$ is a closed-curve, and $\mathbf{w} \in \mathbb{C}$ is an *appropriate* point.

a Detailing the precise conditions needed on **h**, **S** and **w**, *carefully* state the Cauchy Integral Formula Theorem.

b Recall the Cauchy Homotopy Thm: Suppose closed-curves **S** and **R** are homotopic in an open set on which a fnc **f** is holomorphic. Then $\oint_S f = \oint_R f$.

Use the above CHT to give a formal proof of the Cauchy Integral Formula Theorem. Also draw LARGE pictures showing the ideas in the proof.

W1: _____ 110pts

W2: _____ 65pts

W3: _____ 85pts

Total: _____ 260pts

Please PRINT your name and ordinal. Ta: _____

Ord: _____

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor.*

Signature: _____