

†: $\nabla(y) := ty'' - [1+t]y' + y.$

Note. Write unambiguously e.g, $1/a + b$ should be bracketed either $[1/a] + b$ or $1/[a + b]$, as appropriate. (Be careful with negative signs!)

Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g, write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

W1: Show no work.

10 **a** The answer is:

Only one, but the light bulb has to want to change.

The question is: (See Canvas.)

How many psychiatrists does it take to change a light bulb?

Consider DE $\nabla(y) = 3t^2$. Dividing both sides by t makes the lefthand-side now have a monic operator, to which our VoP (Variation of Parameters) applies. Then VoP tells us that

$y_{\alpha,\beta} :=$

is the general soln to $\nabla(y_{\alpha,\beta}) = 3t^2$.

20 **b** $\lim_{x \nearrow \infty} \frac{\cosh(x+4)}{\sinh(x+7)} =$

10 **W2:** “I have neither requested nor received help on this exam other than from my professor.”

25 **c** The simplest function $\varphi = \varphi(t)$ satisfying

†: $[\mathbf{D}^3 - 5\mathbf{I}]^4(\varphi) = e^{2t}$

is $\varphi(t) =$

[Express your answer in simplest form.]

15 **d** “For all continuous functions h and g :

$[h+g]^{\otimes 2} = h^{\otimes 2} + 2[h \otimes g] + g^{\otimes 2}.$ \mathcal{T} \mathcal{F}

30 **e** With $G(t) := \cos(\cos(\cos(t)))$, a solution $y = y(t)$ to $2y'' - 7y' + 3y = G$ is $y := \mathbf{f} \otimes G$, where $\mathbf{f}(t) =$

W1: _____ 140pts

W2: _____ 10pts

Total: _____ 150pts