

Staple!

Ord: _____

Differential Eqns
MAP2302

W-Class

Prof. JLF King
30Sep2015

W1: Show no work.

[z] One of the authors of our text is Circle:
 Archimedes DNE Euler Fuchs Gauss Mendez Sanders
 Stirling Trump Tillman Williams Wright York Ziv

[a] Fnc $y_\beta(t) :=$ _____
 is the general soln to $\frac{dy}{dt} = 8t^3 \cdot [y - 5]$. [Hint: SoV.]
 The particular $y()$ with $y(0) = 8$ is
 $y(t) :=$ _____ And this
 function has $y(1) =$ _____

[b] A particular soln $y = y(t)$ to

$$\dagger: \quad [\mathbf{D} - 5\mathbf{I}]^3(y) = e^{5t} + e^{3t}$$

is $y(t) =$ _____.

[c] Function $h()$ satisfies $2h'' + h' - 6h = 0$,
 and initial conditions h(0) = 5 and h'(0) = -3. So

$$h(t) = \alpha e^{At} + \beta e^{Bt}, \text{ for numbers}$$

$$\alpha = \text{_____}, A = \text{_____}, \beta = \text{_____}, B = \text{_____}.$$

[d] For $t > 0$, fnc $y_\alpha(t) :=$ _____
 is the gen.soln to $y' + \left[\frac{2}{t} \cdot y\right] = t^3$. [Hint: FOLDE.]

W2: Show no work.

[e] DiffOperators $\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ are defined as

$$\mathbf{P}(f) := f(3) \cdot f', \quad \mathbf{Q}(f) := \cos(3) \cdot f^{(3)}, \\ \mathbf{R}(f) := [\cos(3) \cdot f] + f'', \quad \mathbf{S}(f) := \cos(3) + [3f'].$$

Then... \mathbf{P} is linear: $\mathcal{T} F$. \mathbf{Q} is linear: $\mathcal{T} F$.
 \mathbf{R} is linear: $\mathcal{T} F$. \mathbf{S} is linear: $\mathcal{T} F$.

[f] The discriminant of polynomial
 $f(x) := 3x^2 + 3x + 1$ is $\text{Discr}(f) =$ _____.

[g] Let $f(t) := 3e^{5t}$ and $g(t) := e^{5t}$. Translating,
 then, $\mathbf{T}_r(f) = g$, where $\mathbf{r} =$ _____ $\in \mathbb{R}$.

End of W-Class

W1: _____ 145pts

W2: _____ 50pts

Total: _____ 195pts

Please PRINT your name and ordinal. Ta:

Ord:

_____ **HONOR CODE:** "I have neither requested nor received help on this exam other than from my professor."

Signature: _____

Hello. Write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed. Write expressions unambiguously e.g., "1/a + b" should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with negative signs!)

Do not approx.: If your result is " $\sin(\sqrt{\pi})$ " then write that rather than .9797...

Use "f(x) notation" when writing fncs; in particular, for trig and log fncs. E.g, write " $\sin(x)$ " rather than the horrible $\sin x$ or $[\sin x]$.

Write rational numbers as fractions: E.g $\frac{1}{2}$ and $1/3$, but not 0.51 nor 0.3333...; use fractions.