

W1: *Show no work. Please write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.*

a Let $\tau()$ and $\sigma()$ be the number-of and sum-of divisors, resp.. Then $\tau(4000) =$ and $\sigma(4000) =$ (Please leave each answer as a product of integers.)

b The Huffman code with letter-probabilities

$$I: \frac{12}{66} \quad \mathcal{M}: \frac{5}{66} \quad O: \frac{7}{66} \quad \mathcal{R}: \frac{4}{66} \quad S: \frac{32}{66} \quad T: \frac{6}{66}$$

codes these to bitstrings: $I:$ $\mathcal{M}:$
 $O:$ $\mathcal{R}:$ $S:$ $T:$

Bitstring 010010111001101 decodes to

, answering: “*What you do to a castle?*”

c Bitstring “ $10101001000000010011100100111001$ ”, via the Elias code, decodes to , a sequence of *natnums* [gun-blip-blip], followed by noise-bits . The natnum-sequence decodes to rune-string “ ”.

Conv, Elias(89)= (bitstring)

d Bits $01001010010000110001101101100111$ decode in *Idx*-form, e.g. $\langle 7 \rangle 1 \langle 3 \rangle 1 \langle 9 \rangle 0 \dots \langle 3 \rangle 1 \langle 0 \rangle \langle 4 \rangle$, to . As 15 bits, it is .

Use *Ziv-Lempel* seeded with $\langle 0 \rangle = ‘’$, $\langle 1 \rangle = ‘1’$, and $\langle 2 \rangle = ‘0’$. Using our fivebit-code, the 15 bits decode to symbols .

e Consider the three congruences C1: $z \equiv_{15} 11$, C2: $z \equiv_{21} 5$, and C3: $z \equiv_{70} 61$. Let z_j be the *smallest natnum* [or *DNE*] satisfying (C1) $\wedge \dots \wedge$ (Cj). Then

$$z_2 = ; z_3 = .$$

W2: *Essay question, OYOSOP:*

For a finite code \mathcal{C} over alphabet $\{A, B, E, O, L\}$, state –precisely– the *Kraft-McMillan theorem*, defining all the terms you use.

Also answer: “Does every *finite* suffix code satisfy the *Kraft-McMillan theorem*?”

End of Class-W

W1: 140pts

W2: 45pts

Total: 185pts