

Staple!

Sets and Logic
MHF3202 2787

Class-W

Prof. JLF King
31Aug2015W4: _____ 80pts
W5: _____ 50pts**W4:** Short answer. Show no work.Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.**Total:** _____ 130pts**a** For $G := \{1, 2, 3, 4\}$, consider $f: G \rightarrow \mathcal{P}(G)$ by

$$\begin{aligned}f(1) &:= \{3, 4\}, & f(2) &:= G, \\f(3) &:= \emptyset, & f(4) &:= \{1, 4\}.\end{aligned}$$

The set $B := \{x \in G \mid f(x) \not\ni x\}$ is $\{ \dots \}$.**b** An explicit bijection $F: \mathbb{N} \times \mathbb{N} \hookrightarrow [-4.. \infty)$ is

$$F(n, k) := \lfloor \dots \rfloor.$$

c An explicit bijection $F: \mathbb{N} \hookrightarrow \mathbb{Z}$ is this:

$$\text{When } n \text{ is even, then } F(n) := \lfloor \dots \rfloor.$$

$$\text{When } n \text{ is odd, then } F(n) := \lfloor \dots \rfloor.$$

d Both \sim and \bowtie are equiv-relations on a set Ω . Define binrels **I** and **U** on Ω as follows.Define $\omega \mathbf{U} \lambda$ IFF Either $\omega \sim \lambda$ or $\omega \bowtie \lambda$ [or both].Define $\omega \mathbf{I} \lambda$ IFF Both $\omega \sim \lambda$ and $\omega \bowtie \lambda$.So “**U** is an equiv-relation” is: $\begin{array}{cc} T & F \\ T & \end{array}$ So “**I** is an equiv-relation” is: $\begin{array}{cc} & F \\ T & \end{array}$ OYOP: *In grammatical English sentences, write your essay on every third line (usually), so that I can easily write between the lines. Do not restate the question.***W5:** Interval-of-integers $\mathbf{J} := [101..200)$ has 99 elements. A subset $S \subset \mathbf{J}$ is **Big** if $|S| = 51$. Subset $S \subset \mathbf{J}$ is **Perfect** if there exist *distinct* members $x, y \in S$ st. $x + y = 300$.Prove that **Big** \Rightarrow **Perfect**. [Hint: PHP. Carefully specify what your pigeon-holes are.]

End of Class-W