

W4:	_____	60pts
W5:	_____	50pts
W6:	_____	45pts

W4: Short answer. Show no work.

Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a Prof. King believes that writing in complete, coherent sentences is crucial in communicating Mathematics, improves posture, and whitens teeth. one:

True! Yes! **wH'at S a?sEnTENcE**

b On a 5-element set, the number of reflexive symmetric binrels is .

On a 3-element set, there are many equivalence relations.

c On $\Omega := [1..29] \times [1..29]$, define binary-relation **C** by: $(x, \alpha) \mathbf{C} (y, \beta) \text{ IFF } x \cdot \beta \equiv_{30} y \cdot \alpha$. Statement "Relation **C** is an equivalence relation" is: **T** **F**

OYOP: *In grammatical English sentences, write your essays on every third line (usually), so that I can easily write between the lines. Do not restate the question.* Start each essay on a new sheet-of-paper. Please number the pages "1 of 57", "2 of 57" ... (or "1/57", "2/57" ...) I suggest you put your name on each sheet.

W5: An **Lmino** (pron. "ell-mino") comprises three squares in an "L" shape (all four orientations are allowed). For natnum N , let \mathbf{B}_N denote the $3 \times N$ board: I.e, is the \mathbf{B}_5 board. Prove:

Theorem: When N is odd, then board \mathbf{B}_N is not Lmino-tilable.

You will likely want to first *state* and *prove* a Lemma. Now use appropriate induction on N to prove the thm. Also: *Illustrate your proof* with (probably several) large, labeled pictures.

W6: Interval-of-integers $\mathbf{J} := [101..200]$ has 99 elements. A subset $S \subset \mathbf{J}$ is **Big** if $|S| = 51$. Subset $S \subset \mathbf{J}$ is **Perfect** if there exist *distinct* members $x, y \in S$ st. $x + y = 300$.

Prove that **Big \Rightarrow Perfect**. [Hint: PHP. Carefully specify what your pigeon-holes are.]

Total: _____ 155pts