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Abstract: (See “Joe’s Circle Puzzle” for an application of
this, in Problems NB)

We are born knowing that. . . For D ∈ Z+, the
[D−1]-sphere of radius r ≥ 0 is the set of tuples

(((x1, x2, . . . , xD))) ∈ R×DU:

with x1
2 + · · ·+ xD

2 = r2. In contrast, the [closed] D-ball , for
D ∈ N, comprises those (U) with x1

2 + · · ·+ xD
2 ≤ r2. So the

[D−1]-sphere is the surface of the D-ball.

Examples. The 2-sphere is the usual sphere; the 1-sphere is the circle;
the 0-sphere comprises the two points ±r, which are the endpoints
of the 1-ball [ r, r], which is an interval.

The 2-ball is the disk, and the 3-ball is the usual (solid) ball, e.g
a bowling ball. (The 0-ball is the one point of R×0; the empty tuple.) �

Prolegomena. Define constants βD, σD, for
D = 0, 1, 2, . . . , from the ball of radius r:

βD · rD := D-volume of the D-ball;
σD · rD := D-SurfaceArea of [D+1]-ball

For a ball, surface area is the growth rate of vol-
ume and so σD−1r

D−1 equals

lim
∆r↘0

βD[r + ∆r]D − βDrD

∆r
note
===

d

dr
(βD · rD) .

Consequently

σD−1 = D · βD , for D ∈ Z+.1:

(Do we realize, forD = 3, 2, 1, that we already knew (1);
we just didn’t know that we knew it?)

Let J :=
∫ ∞
∞ e x2

dx. We use the PCT (“polar
coordinate trick”) to show that J =

√
π . We in-

tegrate the cartesian-square of the integrand to
conclude that

J2 =
[∫ ∞

∞
e [x2] dx

]
·
[∫ ∞

∞
e [y2] dy

]
=
∫ ∞

∞
e [x2+y2] · d(((x, y)))

=
∫ ∞

0
e r2 · 2πr · dr︸ ︷︷ ︸

Area of radius-r annulus
of thickness dr.

.

2.1:

Hence J2 = π · [ e r2 ]
∣∣∣r= ∞

r=0
= π. Since J is the in-

tegral of a non-negative fnc, nec. J ≥ 0. Thus∫ ∞

∞
e x2

dx =
√
π .2.2:

A Device used Twice is a Technique.
For D a posint, then, πD/2 equals the product

[π
1
2 ]D =

[∫ ∞

∞
e [x1]2 dx1

]
· . . . ·

[∫ ∞

∞
e [xD]2 dxD

]
=
∫ ∞

∞
e [x1

2+···+xD
2] · d(((x1, . . . , xD))) .

Converting this last integral into polar coordi-
nates yields

πD/2 =

∞∫
0

e r2 · σD−1r
D−1 · dr︸ ︷︷ ︸

Infinitesimal D-volume of
thickened [D−1]-sphere.

.2.1b:

Here, σD−1r
D−1 is the [D−1]-area of the spherical

shell of radius r. Multiplying by thickness dr gives
σD−1r

D−1 dr as the infinitesimal D-volume of the
thickened sphere.

Let’s explore this last integral.

The Gamma Function

For each D ∈ R, let
�
�

�
�ID :=

∫ ∞
0 e r2rD−1 dr . For

D ≤ 0 this integral is ∞; we henceforth will�� ��only consider D ≥ 0. Courtesy the substitutions
2K + 2 := D and t := r2, we have that

ID = 1
2

∫ ∞
0
e r2︸︷︷︸
e t

r2K︸︷︷︸
tK

2r dr︸ ︷︷ ︸
dt

= 1
2

∫ ∞
0

e t tK dt .

This RhS suggests defining a fnc which is tradi-
tionally called the Gamma function :

Γ(K + 1) :=
∫ ∞

0
tKe t dt ,

for K ∈ C with
Re(K) > 1 .∗:

So I2K+2 = 1
2
· Γ(K + 1). Hence ID = 1

2
· Γ(D

2
).

Solving for σD−1 in (2.1b) thus yields

σD−1 =
πD/2

ID
= 2 · πD/2

Γ(D/2)
.1b:
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Computing Γ(). Easily, Γ(1) =
∫∞

0 e t dt = 1.
When Re(K)>0, then lim

t↘0
[tKe t] is zero. Thus

tK [ e t]
∣∣∣t=∞
t=0

= 0 .

Integrating RhS(∗) by parts produces
Γ(K + 1) = 0−

∫∞
0 [ e t] ·KtK−1 dt. Thus

For all K ∈ C
with Re(K) > 0

: Γ(K + 1) = K · Γ(K) .

This and (1b) yield σD+1 = σD−1 · 2π
D
. Com-

bined with (1), we now have

σD = σD−2 · 2
D−1
· π ,

βD = βD−2 · 2
D
· π .

1c:

for each D ∈ [2 ..∞).

SurArea and Vol of the D-ball

We know that σ0 = 2 [an interval has 2 endpts] and
that σ1 = 2π. So (1c) allows us to fill-in the
σD column below. Then (1) allows us to fill-in
the βD column.

D βD · rD σD · rD

0 1 2

1 2 · r 2π · r

2 π · r2 4π · r2

3 4
3
π · r3 2π2 · r3

4 1
2
π2 · r4 8

3
π2 · r4

5 8
15
π2 · r5 π3 · r5

6 1
6
π3 · r6 16

15
π3 · r6

7 16
105

π3 · r7 1
3
π4 · r7

8 1
24
π4 · r8 32

105
π4 · r8

9 32
945

π4 · r9 1
12
π5 · r9

10 1
120

π5 · r10 64
945

π5 · r10

11 64
10395

π5 · r11 1
60
π6 · r11

12 1
720

π6 · r12 128
10395

π6 · r12

We can get a non-recursive formula for σD using
factorial notation. [Exercise.]

Γ() summary. Function

Γ(z) :=
∫ ∞

0
tz−1e t dt ,

for z ∈ C with
Re(z) > 0 ,2.2b:

has values
Γ(0) = ∞ ;

Γ(1
2
) =

√
π ;

Γ(1) = 1 ;

Γ(n) = [n−1]! , for n ∈ Z+. More generally,

Γ(z) = [z−1] · Γ(z−1) , for Re(z) > 1.

2.2c:

Centroids
Our goal here is to find the centroid of a hemi-
ball and hemi-sphere. Measuring from the center
of the radius-r ball/sphere of dimension D, define
constants BD and SD by

BD · r := Dist-to-centroid of the D-hemi-ball;
SD · r := Dist-to-centroid of the D-hemi-sphere.

We will compute this using an integral in polar
coords of an angle θ. For K 6= 1, note that∫ π/2

0
sin(θ)Kcos(θ) · dθ =

1

K + 1
.3:

Henceforth use c and s for cos(θ) and sin(θ). For
the [D+1]-hemi-ball

Vol =
∫ π/2

0
βD · [rs]D︸ ︷︷ ︸

Area of
slice.

· s · r dθ︸ ︷︷ ︸
Thickness
of slice.

.

We already know that the value of this integral is
1
2
βD+1 · rD+1. The Total Torque Relative to Zero

is computed by the same integral, together with a
lever arm.

TTRZ =
∫ π/2

0
βD · [rs]D︸ ︷︷ ︸

Area.

· s · r dθ︸ ︷︷ ︸
Thickness.

· rc︸︷︷︸
Lever arm.

.
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Courtesy (3),

TTRZ = rD+2βD ·
1

D + 2
.4:

The quotient gives the centroid.

BD+1 =
TTRZ
Vol

=
βD
βD+1

· 2

D + 2
.5:

�
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