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Prolegomenon. We have an innerproduct spaceV;
use V := R2 for the time being. A subset Ω ⊂ V is a
domain if Ω is non-void, open and connected. (The
“connected” isn’t really necessary.)

Henceforth J denotes a closed interval [a, b] in R.
A path Γ (in Ω) can be described by a piecewise–
C1 parameterization r:J→Ω. Path Γ starts at point
Start(Γ) := r(a) and ends at Stop(Γ) := r(b) (So,
technically, a path can be viewed as an equivalence class of
parameterizations.)

Use Γ for Γ traversed backwards. Each parameter-
ization r:J→Ω of Γ yields a parameterization q:J→Ω
of Γ by defining

q(t) := r(b+a− t) .

A “vectorfield F on Ω” is a mapping F:Ω→V;
usually we ask that the v.f be at least cts (continuous).

The path integral of a v.f over a path is∫
Γ
〈F, dr〉 :=

∫
J

〈
F
(
r(t)

)
, r′(t)

〉
dt .

A field is conservative if, for each closed loop Γ, the
integral

∫
Γ 〈F, dr〉 is zero.

A field F is a gradient v.f if there exists a C1-
function h:Ω→R so that ∇h = F. This h is called a
potential-fnc of F. (Evidently h+17 is another potential-
fnc for F.)

1: Fund. Thm of Path Integrals (FTPI). On Ω,∫
Γ
〈∇h, dr〉 = h(Stop(Γ))− h(Start(Γ))

for each potential-function h and each path Γ. ♦

Write a vectorfield as F = αı̂+β̂, where α, β:Ω→V
are the component fncs of F. Suppose this F = ∇h.
Then hx = α and hy = β. By equality (Clairaut’s thm)
of the mixed 2nd-partials of h, automatically βx = αy.
The difference

k-curlF() := βx()− αy()2:

is a map Ω→R which will be useful in the sequel. We
read ‘k-curlF(P )’ as “the k-curl of F at (point) P ”.

For a gradient v.f, the k-curl♥1 is identically zero; such
a field is said to be irrotational.

Example 1. For a vector w ∈ R2, let Turn(w) be the
vector which is w rotated CCW (counterclockwise) by a
right-angle.

Let σ be a “strength fnc” on the posreals. Define a
corresponding v.f Fσ by

Fσ(w) := σ(‖w‖) · Turn(w)/‖w‖ .

Letting Cρ be the radius-ρ circle oriented CCW, we
have that ∫

Cρ
〈Fσ, dr〉 = σ(ρ) · 2πρ .3:

So certainly Fσ is not conservative. �

Example 2. Take a σ so that integral (3) is indepen-
dent of ρ; say σ(ρ) := 1/ρ. Let G := Fσ be the cor-
responding vectorfield; it is defined on the punctured
plane, which we will write as Ω◦. It can be shown that∫

Γ
〈G, dr〉 = 0

for each closed-loop Γ ⊂ Ω◦ which does not go
around the origin.♥2 (Proof-idea: Approximate Γ by a
finite sequence of circle-arcs and radial segments.) In x, y-
coordinates our G equals αı̂+ β̂, where

α = y/[x2 + y2] and

β = x/[x2 + y2] .
4:

Exercise: Use (4) and (2) to verify that G is irrota-
tional.

To what extent is there a real-valued fnc h so that
∇h = G? Expressed in polar-coords, suppose that
Q := (((ρ, θ))) is a particular point in Ω◦. The map ϕ 7→
(((ρ, ϕ))), as angle ϕ strolls from 0 to θ, parameterizes
an oriented arc of circle, call it ΓQ, going from point
(((ρ, 0))) to Q. Hence∫

ΓQ

〈Fσ, dr〉 = θ ,

♥1Difference (2) is the k̂-component of the curl of a 3-dim
vectorfield, whence the name k-curl.

♥2Indeed, more generally, the integral is zero for each closed-
loop Γ with winding number zero.
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and does not depend on ρ. So the definition

h(ρ, θ) := θ5:

would give a potential-fnc h for the G vectorfield —if
we had a consistent way to assign real numbers to
geometric angles on a circle. The problem is that dis-
tinct reals, e.g θ and θ+2π, name the same geometric
angle.

To finesse this difficulty, agree to slit the plane along
a ray from the origin. On this slit-plane our (restricted)
G is a gradient v.f. We can rewrite fnc (5) in cartesian
coords as

h(x, y) := arctan
(y
x

)
.5′:

Comparing to (4), one can verify♥3 that hx = α and
hy = β, at those points where (??′) is well-defined.�

Defn. A domain Ω ⊂ RN is simply-connected
if each closed-loop Γ ⊂ Ω can be contracted (always
staying within Ω) to a point. For example, a sphere
or punctured sphere is simply-connected. However a
doubly-punctured sphere is not. Neither a torus nor a
solid-torus is simply-connected. �

6: Theorem. Suppose that F:Ω→R is a continuous
vectorfield in RN . Then

[F a gradient v.f.] ⇐⇒ [F conservative] . ♦

The following thm generalizes to higher dimensions,
but we’ll state in in dimension 2.

7: Theorem. Suppose that F is a C1-vectorfield on
Ω ⊂ R2. Then

[F a gradient v.f ] =⇒ [F is irrotational] .

If Ω is simply-connected, then the converse holds. ♦
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♥3That y/x is undefined at x = 0 is an artifact of using carte-
sian coordinates (and the arbitrary choice of domain for arctan).
After all, the expression arctan(y/x) extends continuously over
a slit plane.
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