

Vector Fields

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
`squash@ufl.edu`
 Webpage <http://squash.1gainesville.com/>
 17 November, 2017 (at 12:02)

Prolegomenon. We have an innerproduct space \mathbf{V} ; use $\mathbf{V} := \mathbb{R}^2$ for the time being. A subset $\Omega \subset \mathbf{V}$ is a **domain** if Ω is non-void, open and connected. (The “connected” isn’t really necessary.)

Henceforth J denotes a closed interval $[a, b]$ in \mathbb{R} . A **path** Γ (in Ω) can be described by a *piecewise- \mathbf{C}^1* parameterization $\mathbf{r}: J \rightarrow \Omega$. Path Γ starts at point $\text{Start}(\Gamma) := \mathbf{r}(a)$ and ends at $\text{Stop}(\Gamma) := \mathbf{r}(b)$ (So, technically, a path can be viewed as an equivalence class of parameterizations.)

Use $-\Gamma$ for Γ traversed backwards. Each parameterization $\mathbf{r}: J \rightarrow \Omega$ of Γ yields a parameterization $\mathbf{q}: J \rightarrow \Omega$ of $-\Gamma$ by defining

$$\mathbf{q}(t) := \mathbf{r}(b+a-t).$$

A “**vectorfield** \mathbf{F} on Ω ” is a mapping $\mathbf{F}: \Omega \rightarrow \mathbf{V}$; usually we ask that the v.f be at least cts (continuous).

The **path integral** of a v.f over a path is

$$\int_{\Gamma} \langle \mathbf{F}, d\mathbf{r} \rangle := \int_J \langle \mathbf{F}(\mathbf{r}(t)), \mathbf{r}'(t) \rangle dt.$$

A field is **conservative** if, for each *closed loop* Γ , the integral $\int_{\Gamma} \langle \mathbf{F}, d\mathbf{r} \rangle$ is zero.

A field \mathbf{F} is a **gradient v.f** if there exists a \mathbf{C}^1 -function $h: \Omega \rightarrow \mathbb{R}$ so that $\nabla h = \mathbf{F}$. This h is called a **potential-fnc** of \mathbf{F} . (Evidently $h+17$ is another potential-fnc for \mathbf{F} .)

1: Fund. Thm of Path Integrals (FTPI). *On Ω ,*

$$\int_{\Gamma} \langle \nabla h, d\mathbf{r} \rangle = h(\text{Stop}(\Gamma)) - h(\text{Start}(\Gamma))$$

for each potential-function h and each path Γ . \diamond

Write a vectorfield as $\mathbf{F} = \alpha \hat{\mathbf{i}} + \beta \hat{\mathbf{j}}$, where $\alpha, \beta: \Omega \rightarrow \mathbf{V}$ are the **component fncs** of \mathbf{F} . Suppose this $\mathbf{F} = \nabla h$. Then $h_x = \alpha$ and $h_y = \beta$. By equality (Clairaut’s thm) of the mixed 2nd-partials of h , automatically $\beta_x = \alpha_y$. The difference

$$2: \quad \text{k-curl}_{\mathbf{F}}() := \beta_x() - \alpha_y()$$

is a map $\Omega \rightarrow \mathbb{R}$ which will be useful in the sequel. We read ‘ $\text{k-curl}_{\mathbf{F}}(P)$ ’ as “*the k-curl of \mathbf{F} at (point) P* ”.

For a gradient v.f, the k-curl¹ is identically zero; such a field is said to be **irrotational**.

Example 1. For a vector $\mathbf{w} \in \mathbb{R}^2$, let $\text{Turn}(\mathbf{w})$ be the vector which is \mathbf{w} rotated CCW (counterclockwise) by a right-angle.

Let σ be a “strength fnc” on the posreals. Define a corresponding v.f \mathbf{F}_{σ} by

$$\mathbf{F}_{\sigma}(\mathbf{w}) := \sigma(\|\mathbf{w}\|) \cdot \text{Turn}(\mathbf{w}) / \|\mathbf{w}\|.$$

Letting C_{ρ} be the radius- ρ circle oriented CCW, we have that

$$3: \quad \int_{C_{\rho}} \langle \mathbf{F}_{\sigma}, d\mathbf{r} \rangle = \sigma(\rho) \cdot 2\pi\rho.$$

So certainly \mathbf{F}_{σ} is not conservative. \square

Example 2. Take a σ so that integral (3) is independent of ρ ; say $\sigma(\rho) := 1/\rho$. Let $\mathbf{G} := \mathbf{F}_{\sigma}$ be the corresponding vectorfield; it is defined on the *punctured plane*, which we will write as Ω° . It can be shown that

$$\int_{\Gamma} \langle \mathbf{G}, d\mathbf{r} \rangle = 0$$

for each closed-loop $\Gamma \subset \Omega^{\circ}$ which *does not go around the origin*.² (Proof-idea: Approximate Γ by a finite sequence of circle-arcs and radial segments.) In x, y -coordinates our \mathbf{G} equals $\alpha \hat{\mathbf{i}} + \beta \hat{\mathbf{j}}$, where

$$4: \quad \begin{aligned} \alpha &= -y/[x^2 + y^2] & \text{and} \\ \beta &= x/[x^2 + y^2]. \end{aligned}$$

Exercise: Use (4) and (2) to verify that \mathbf{G} is irrotational.

To what extent is there a real-valued fnc h so that $\nabla h = \mathbf{G}$? Expressed in polar-coords, suppose that $Q := (\rho, \theta)$ is a particular point in Ω° . The map $\varphi \mapsto (\rho, \varphi)$, as angle φ strolls from 0 to θ , parameterizes an oriented arc of circle, call it Γ_Q , going from point $(\rho, 0)$ to Q . Hence

$$\int_{\Gamma_Q} \langle \mathbf{F}_{\sigma}, d\mathbf{r} \rangle = \theta,$$

¹Difference (2) is the $\hat{\mathbf{k}}$ -component of the curl of a 3-dim vectorfield, whence the name k-curl.

²Indeed, more generally, the integral is zero for each closed-loop Γ with *winding number* zero.

and does not depend on ρ . So the definition

$$5: \quad h(\rho, \theta) := \theta$$

would give a potential-fnc h for the \mathbf{G} vectorfield —if we had a consistent way to assign real numbers to geometric angles on a circle. The problem is that *distinct* reals, e.g. θ and $\theta+2\pi$, name the same geometric angle.

To finesse this difficulty, agree to slit the plane along a ray from the origin. On this slit-plane our (restricted) \mathbf{G} is a gradient v.f. We can rewrite fnc (5) in cartesian coords as

$$5': \quad h(x, y) := \arctan\left(\frac{y}{x}\right).$$

Comparing to (4), one can verify³ that $h_x = \alpha$ and $h_y = \beta$, at those points where (??') is well-defined. \square

Defn. A domain $\Omega \subset \mathbb{R}^N$ is *simply-connected* if each closed-loop $\Gamma \subset \Omega$ can be contracted (always staying within Ω) to a point. For example, a sphere or punctured sphere is simply-connected. However a *doubly*-punctured sphere is not. Neither a torus nor a solid-torus is simply-connected. \square

6: Theorem. Suppose that $\mathbf{F}: \Omega \rightarrow \mathbb{R}$ is a continuous vectorfield in \mathbb{R}^N . Then

$$[\mathbf{F} \text{ a gradient v.f.}] \iff [\mathbf{F} \text{ conservative}]. \quad \diamond$$

The following thm generalizes to higher dimensions, but we'll state it in dimension 2.

7: Theorem. Suppose that \mathbf{F} is a \mathbf{C}^1 -vectorfield on $\Omega \subset \mathbb{R}^2$. Then

$$[\mathbf{F} \text{ a gradient v.f.}] \implies [\mathbf{F} \text{ is irrotational}].$$

If Ω is simply-connected, then the converse holds. \diamond

Filename: Problems/Analysis/Calculus/vectorfield.latex
As of: Wednesday 15Mar2006. Typeset: 17Nov2017 at 12:02.

³That y/x is undefined at $x = 0$ is an artifact of using cartesian coordinates (and the arbitrary choice of domain for \arctan). After all, the expression $\arctan(y/x)$ extends continuously over a slit plane.