

V1: Show no work. *NOTE:* The **inverse-fnc** of g , often written as g^{-1} , is *different* from the **reciprocal fnc** $1/g$. E.g, suppose g is invertible with $g(-2) = 3$ and $g(3) = 8$: Then $g^{-1}(3) = -2$, yet $[1/g](3) \stackrel{\text{def}}{=} 1/g(3) = 1/8$.

Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a $[\sqrt{5}^{\sqrt{8}}]^{\sqrt{2}} = \text{_____} \cdot \log_{16}(8) = \text{_____}$.

b Line $y = Mx + B$ is orthogonal to $y = \frac{1}{5}x + 2$ and owns $(4, 10)$. So $M = \text{_____}$ and $B = \text{_____}$.

c Quadratic $6x^2 + 29x + 35 = [Ax - \alpha] \cdot [Bx - \beta]$, for numbers $A = \text{_____}$, $\alpha = \text{_____}$; $B = \text{_____}$, $\beta = \text{_____}$.

d Below, f and g are differentiable fncs with

$$f(2) = 3, \quad f(3) = 5, \quad f'(2) = 19, \quad f'(3) = 17,$$

$$g(2) = 11, \quad g(3) = 13, \quad g'(2) = \frac{1}{2}, \quad g'(3) = 7,$$

$$f(5) = 43, \quad g(5) = 23, \quad f'(5) = 41, \quad g'(5) = 29.$$

Define the composition $C := g \circ f$. Then

$$C(2) = \text{_____}; \quad C'(2) = \text{_____}$$

Please write each answer as a product of numbers; **do not** multiply out. [Hint: The Chain rule.]

e Let $y = f(x) := [7 + \sqrt[3]{2x}]/5$. Its inverse-function is $f^{-1}(y) = \text{_____}$.

f Let $g(x) := x^3 + 2x - 5$. Then $g^{-1}(7) = \text{_____}$

and $[g^{-1}]'(7) = \text{_____}$.

g For natural number N , the sum $\sum_{k=18}^{18+N} 4^k$ equals _____ .

h Marty the martian has 3 feet. In his sock drawer, he has 50 red socks, 50 blue socks and 50 green socks; 150 socks total, loose, jumbled. The minimum number of (individual) socks he need take, to guarantee a matched set of 3 socks, is _____ .

Please PRINT your Name

.....

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature: