

Due **BoC, Monday, 28Oct2019, wATMP!**

Please *fill-in* every *blank* on this sheet. Write **DNE** if the object does not exist or the operation cannot be performed.
NB: **DNE** $\neq \{\} \neq 0 \neq$ Empty-word.

V1: *Show no work.*

a Sequence $\vec{L} := (L_n)_{n=0}^{\infty}$ is defined by $L_0 := 0$, $L_1 := 1$, and $\forall n \in \mathbb{N}: L_{n+2} = 3L_{n+1} + L_n$. This implies $\forall k \in \mathbb{N}: L_k = [P \cdot \alpha^k + Q \cdot \beta^k]$, for real numbers $\alpha = \dots > \beta = \dots$, $P = \dots$, $Q = \dots$.

b $Q := \{(6,2), (2,7), (5,2), (7,3), (7,5), (3,4), (1,3), (1,5)\}$ is a binrel on $[1..7]$, with transitive closure \mathbf{R} . Then:

$2\mathbf{R}2$ is *T F*. $4\mathbf{R}6$ is *T F*. $7\mathbf{R}7$ is *T F*.

c *Shuffling 2N-card deck:* Put the *upper N* in your *right hand*, and the *lower N* in *left hand*. Drop a *RH* card, then a *LH*, then *RH*, etc. [New bottom-card came from *RH*; new top-card from *LH*.] So $S_N := \text{Sign}(\pi_N) =$

And S_{2019} is *circle* **+1 -1**.

d Rewrite $x \in \bigcup_{j \in A} [G_j \cup \bigcap_{k \in B} H_k]$ *without* \cup, \cap , only using $\forall : \exists \text{ st. } \in \ni \vee \wedge$ [$x \in G \text{ } H \text{ } k \text{ } j \text{ } A \text{ } B$], as \dots .

For the two essay questions, carefully TYPE, double spaced, grammatical solns.

V2: Let \mathbf{E}_n be the equilateral triangle with side-length 2^n . This \mathbf{E}_n can be tiled in an obvious way by 4^n many little-triangles [copies of \mathbf{E}_0]; [picture on blackboard] The “**punctured** \mathbf{E}_n ”, written $\widetilde{\mathbf{E}}_n$, has its topmost copy of \mathbf{E}_0 removed.

A **(trapezoid)**zoid, \mathbf{T} , comprises three copies of \mathbf{E}_0 glued together in a row, rightside-up, upside-down, rightside-up [picture on blackboard] [A *zoid-tiling* allows all three rotations of \mathbf{T} .]

i PROVE: For each n , board $\widetilde{\mathbf{E}}_n$ admits a zoid-tiling.

ii Let Δ_k be the equilateral triangle of sidelength k ; so \mathbf{E}_n is Δ_{2^n} . Triangle Δ_k comprises k^2 little-triangles.

For what values of k does Δ_k admit a zoid-tiling?

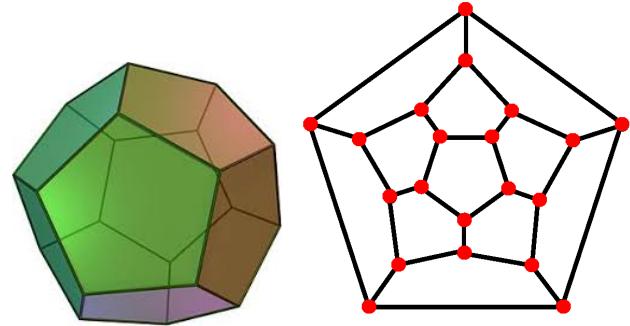
For which k does $\widetilde{\Delta}_k$ admit a zoid-tiling?

V3: [A dodecahedron is a regular polyhedron having 12 faces, 20 vertices and 30 edges; the faces are pentagons.] Two vertices of a regular dodecahedron are *cousins* if they are *distinct* vertices of a common face. [Each vertex has $[3 \cdot 4] - 3 = 9$ cousins.] Write $v \sim w$ to indicate that v and w are cousins. Easily, \sim is symmetric, and anti-reflexive. You can check that \sim is not transitive.

A *labeling* of a regular dodecahedron assigns, to each vertex, a *positive integer*. A labeling is *legal* IFF no pair $v \sim w$ of vertices is assigned the same label.

i Prove there is no legal labeling with vertex-sum [the sum of the 20 labels] equaling 59.

ii Let $\mathcal{S} \subset \mathbb{Z}_+$ be the *set* of vertex-sums obtainable from legal-labelings. Characterize \mathcal{S} explicitly, with proof. You will likely need to construct some particular legal-labelings. [You showed, above, that $\mathcal{S} \not\ni 59$.]



V1: 130pts

V2: 115pts

V3: 95pts

Total: 340pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague). Name/Signature/Ord*

Ord:

Ord:

Ord: