

Sets and Logic
MHF3202 8768

Home-V

Prof. JLF King
24Jan2017

Due **BoC, Mon., 30Jan2017**, wATMP! Please fill-in every *blank* on this sheet. Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$.

V1: Show no work. Simply fill-in each blank on the problem-sheet.

a Using only symbols $P, Q, \wedge, \vee, \neg, T, F,], [$, rewrite, in simplest form, expression $[(P \Rightarrow Q) \Rightarrow P]$ as \dots . Ditto, rewrite $[P \Rightarrow [Q \Rightarrow P]]$ as \dots .

b Write the free vars in each of these expressions.

$$\exists n \in \mathbb{N}: f(n) \in \bigcup_{\ell=p-4}^{p+7} \underbrace{\{x \in \mathbb{Z} \mid \ell \cdot n \equiv_5 x^2\}}_{E2} \underbrace{\qquad\qquad\qquad}_{E1}$$

E3: \dots . E2: \dots . E1: \dots

c The coeff of $x^7 y^{12}$ in $[5x + y^3 + 1]^{30}$ is \dots .
[Write your answer as a product of powers and a multinomial. Optionally, you can expand the multinomial as a product of binomials.]

d $\forall x, z \in \mathbb{Z}$ with $x < z$, $\exists y \in \mathbb{Z}$ st.: $x < y < z$. $T \quad F$
 $\forall x, z \in \mathbb{Q}$ with $x \neq z$, $\exists y \in \mathbb{R}$ st.: $x < y < z$. $T \quad F$
 For all sets Ω , there exists a fnc $f: \mathbb{R} \rightarrow \Omega$. $T \quad F$

For the three essay questions, carefully TYPE triple-spaced, grammatical, solns. I suggest LATEX, but other systems are ok too.

V2: Kindergarten teacher Mrs. Nice has an unlimited supply of cookies. With her N pupils sitting in a circle, Mrs. Nice stands in front of *Abby*. Circling clockwise she takes one step, gives that student, *Bert*, a cookie. Continuing, she takes two steps (passing *Carol*), giving *Danny* a cookie. Then three steps, (passing *Englebert* and *Fran*), giving *Gail* a cookie. Four steps, cookie, five steps, cookie, and so on. [Some kids are getting lots of cookies.]

i

Prove that if $N \geq 3$ is prime, then some child never gets a cookie. [Hint: PHP.]

ii

What can you tell me: When N is even? When N is a non-prime odd? When N has form 2^k ? 3^k ? For what values of N does *Abby* get at least one cookie?

Let $V(N)$ be the number of kids who *never* get a cookie. How large can $V(N)$ get? [The above asked you to prove that $V(\text{OddPrime}) \geq 1$.] How large does ratio $\frac{V(N)}{N}$ get? What conjectures/theorems can you come up with? If you know how to program, do some computer experiments.

V3: Define a sequence $\vec{b} = (b_0, b_1, b_2, \dots)$ by $b_0 := 0$ and $b_1 := 3$ and

$$\dagger: \quad b_{n+2} := 9b_{n+1} - 18b_n, \quad \text{for } n = 0, 1, \dots$$

Use induction to prove, for each natnum k , that

$$\ddagger: \quad b_k = 6^k - 3^k.$$

Further: Given recurrence (\dagger) and initial conditions, explain how you could have discovered/computed the numbers 6 and 3 in the (\ddagger) formula.

Can you generalize to getting a (\ddagger) -like formula when the recurrence is $b_{n+2} := \mathbf{S}b_{n+1} - \mathbf{P}b_n$, for arbitrary real-number coefficients \mathbf{S} and \mathbf{P} ?

V4: Note $f(n) := \frac{1}{2} \cdot [5^n + 21^n]$ is an integer. Prove, for each odd $n \geq 3$, that $f(n)$ is composite. [Hint: Look at $f(n)$ mod something.]

[Are all the hypotheses necessary, or can some be weakened?]

End of Home-V

V1:	_____	110pts
V2:	_____	80pts
V3:	_____	70pts
V4:	_____	65pts

Total: _____ 325pts