

Note. Permitted: Brain, SigmonNotes, calculator, computer, webpage; but no other human beings other than me. Please write each essay on separate sheets of paper, using complete grammatical English sentences. Use every third line.

Essays violate the Checklist at Grade Peril!

Write expressions unambiguously e.g., “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with **negative** signs!) Every “if” must be matched by a “then”.

Use $\mathcal{P}(S)$ to mean “the powerset of S ”.

Exam is due no later than **10:00 AM, Friday, 28Apr2006**, slid under LIT402. Please email me afterwards.

V1: Suppose that α is a root of \mathbb{Q} -irreducible poly

$$f(x) := x^3 - x^2 - 3x - 2.$$

Fact: Each number $z \in \mathbb{Q}(\alpha)$ can be written in *std. form*: as

$$\text{SF}(z) = q_2\alpha^2 + q_1\alpha + q_0$$

where each $q_i \in \mathbb{Q}$. a Please fill-in

$$\text{SF}(\alpha^4) = \alpha^2 + \alpha + \dots$$

$$\text{SF}(2\alpha^5 - \alpha^3) = \alpha^2 + \alpha + \dots$$

$$\text{SF}\left(\frac{1}{\alpha}\right) = \alpha^2 + \alpha + \dots$$

b Let $h(x) := x^2 + 2x - 1$. This $h()$ is coprime to $f()$. Use ζ to compute ratpolys $S(x) = \dots$ and $T(x) = \dots$, st. $S \cdot f + T \cdot h = 1$. (Verify this!) Use this information to write

$$\text{SF}\left(\frac{1}{\alpha^2 + 2\alpha - 1}\right) = \alpha^2 + \alpha + \dots$$

V2: Carefully write a formal proof that there exist *irrational* positive reals w, z so that w^z is *rational*, as follows: Let

$$S := \sqrt{7}, \quad T := \sqrt{2} \quad \text{and} \quad P := S^T.$$

Argue that either S^T is such an example, or P^T is.

V3: Consider the Fibonacci numbers $(f_n)_{n=-\infty}^{\infty}$ defined by $f_0 := 0$, $f_1 := 1$, and $\forall n \in \mathbb{Z} : f_{n+1} = f_n + f_{n-1}$. Prove by induction that

$$* \quad \forall n \in \mathbb{Z}_+ : [f_n]^2 + [f_{n-1}]^2 = f_{2n-1},$$

or provide a CEX. Does (*) hold for n negative?

V4: For any sets C, D , let “ C^D ” be the set of functions $f: D \rightarrow C$. (Think Domain \rightarrow Codomain.) a For arbitrary sets A, P, Q , construct an *explicit* bijection (with *proof*!)

$$\mathbf{H}: A^{P \times Q} \leftrightarrow [A^P]^Q.$$

That is, given an arb. fnc $f \in A^{P \times Q}$, your construction/defn produces a *specific, explicit* fnc $\mathbf{H}(f)$ in $[A^P]^Q$.

[*Suggestion:* To get the idea, first consider specific sets, e.g $A := \{0, 1\}$, $P := \{C, L, M\}$ and $Q := \{\heartsuit, \diamondsuit, \clubsuit, \spadesuit\}$.] Once you get the idea, write your argument for general sets. Remember that that any of these sets could be uncountable (so you can NOT list its elts), or empty.

b (Below, we need any two 2-elts sets. I chose $\{0, 1\}$ and $\{6, 7\}$.) Use “ 2^A ” to abbrev. $\{0, 1\}^A$. You are given bijections

$$\mathcal{F}: \mathbb{N} \times \{6, 7\} \leftrightarrow \mathbb{N} \quad \text{and} \quad \mathcal{G}: 2^{\mathbb{N}} \leftrightarrow \mathbb{R}.$$

In terms of \mathcal{F} , $\mathcal{P} := \mathcal{F}^{-1}$, \mathcal{G} , $\mathcal{Q} := \mathcal{G}^{-1}$ and *your construction (above)*, define these maps **explicitly**:

- 1: $\beta: \mathbb{R}^2 \leftrightarrow 2^{\mathbb{N}} \times 2^{\mathbb{N}}$.
- 2: $\gamma: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \leftrightarrow 2^{\mathbb{N} \times \{6, 7\}}$.
- 3: $\delta: 2^{\mathbb{N} \times \{6, 7\}} \leftrightarrow 2^{\mathbb{N}}$.

Use all this to give an *explicit* bijection

$$4: \quad \varepsilon: \mathbb{R}^2 \leftrightarrow \mathbb{R}.$$

[*Hint:* The γ fnc could use your construction.]

V1:	_____	110pts
V2:	_____	80pts
V3:	_____	80pts
V4:	_____	125pts

Total: _____ 395pts

Print name: _____ Ord: _____

HONOR CODE: “*I have neither requested nor received help on this exam other than from my professor.*”

Signature: _____

Filename: <https://classwork.NapoSelo/NaPo2006g/v-hm.NaPo2006g.latex>

As of: Monday 31Aug2015. Typeset: 21Feb2017 at 13:45.