

Staple!

NT-Cryptography
MAT4930 2H22
MAT6932 21BH

Home-V

Prof. JLF King
Tuesday, 09Feb2016

Due: BoC, Monday, 15Feb2016, with all team-members present. Fill-in every blank on this sheet. This sheet is the *first-page* of your write-up, with your essays securely stapled to it.

V1: Show no work. Write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

a Alice publishes her ElGamal triple: Modulus $M := 997$, base $G := 174$, and value $V := \langle G^\alpha \rangle_M = 609$, where α is her secret key. (She picks α in $[2..R]$, where $R = 498$ is the order of the subgp gen. by G .) Bob has a message $s \in [0..M]$. He picks an ephemeral $\beta \in [1..R]$, then transmits (C, D) where $C := \langle G^\beta \rangle_M = 88$ and $D := \langle s \cdot V^\beta \rangle_M = 99$. Alice knows that $\alpha = 27$, so she decodes $s =$

.....

b $N := \varphi(100) =$ So $\varphi(N) =$ EFT says that $3^{1621} \equiv_N$ $\in [0..N]$. Hence (by EFT) last two digits of $7^{[3^{1621}]} =$

c Number $M := 6063751$ is prime. PoP-factor $\varphi(M)$ as Compute the multiplicative-order, $\text{Ord}_M(157068) =$ [The Descent Algorithm will be explained in class.]

OYOP: Your 2 essay(s) must be TYPED, and Double or Triple spaced. Use the Print/Revise cycle to produce good, well thought out, essays. Start each essay on a new sheet.

Do not restate the problem; just solve it.

V2: Magic integers $G_1 =$, $G_2 =$, $G_3 =$, $G_4 =$, each in $[0..1260]$, are st. $g: \mathbb{Z}_7 \times \mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_5 \rightarrow \mathbb{Z}_{1260}$ is a ring-iso, where

$$g((z_1, z_2, z_3, z_4)) := \left\langle z_1 G_1 + z_2 G_2 + z_3 G_3 + z_4 G_4 \right\rangle_{1260}.$$

Now consider poly $h(x) := [x+59][x-1][x+83]$. Find all solutions to congruences $h(x) \equiv_M 0$, for $M = 7, 4, 9, 5$, displaying the results in a nice table. (Do not show work for this step.)

Team: _____

Now use your ring-iso to compute *all* solns x to $h(x) \equiv_{1260} 0$, displaying the results in a table which shows which 4tuple each came from. There are (not counting multiplicities) $K :=$ many solns.

Explain your method well; then show one computation giving a root *different* (mod 1260) from -59, 1, -83.

V3: The building block of a cryptosystem uses *N-Repeating* numbers, for large values of N . (Defns are below.)

i Prove: For each positive integer N , that there exists an *N-Repeating* number.

ii Produce (with proof, 'natch) a 5-Repeating number $V =$ (A little extra credit: Can you prove that your V is the *smallest* 5-Repeating number?)

Defns. An integer S is **Twinned** if it is divisible by some member of $\{4, 9, 16, 25, 36, \dots\}$; otherwise S is **Lonely**. (E.g 0, -8, 600 are Twinned, and 1, 130, -77 are Lonely.)

For N, S posints, our S is "***N-Repeating***" if *each* member of $\{S + j\}_{j=0}^{N-1}$ is Twinned. E.g., $S=8$ is 2-Repeating but not 3-Repeating. Ditto $S=27$.

End of Home-V

V1: 110ptsV2: 85ptsV3: 115ptsNot typed/double-spaced: -45ptsTotal: 310pts

HONOR CODE: "I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." Name/Signature/Ord

Ord:Ord:Ord: