

Sets and Logic
MHF3202 2787

Home-V

Prof. JLF King
Touch: 4Oct2017

Due **BoC, Monday, 21Oct2013.**, Please *fill-in* every *blank* on this sheet. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

V1: Show no work here. Simply fill-in each blank on the problem-sheet.

a Sequence $\vec{L} := (L_n)_{n=0}^{\infty}$ is defined by $L_0 := 0$, $L_1 := 1$, and $\forall n \in \mathbb{N}: L_{n+2} = 3L_{n+1} + L_n$. This implies $\forall k \in \mathbb{N}: L_k = [P \cdot \alpha^k + Q \cdot \beta^k]$, for real numbers $\alpha = \text{_____} > \beta = \text{_____}$, $P = \text{_____}$, $Q = \text{_____}$.

b Compute the real $\alpha = \text{_____}$ such that

$$*: 3^\alpha \cdot \sum_{k=0}^{4004} \binom{4004}{k} 2^k = \sum_{j=0}^{2013} \binom{2013}{j} 8^j.$$

[Hint: The Binomial Theorem]

c The number of ways of having 4 objects from 9 types is $\left[\begin{smallmatrix} 4 \\ 9 \end{smallmatrix} \right] \xrightarrow{\text{Binom coeff}} \left(\text{_____} \right) \xrightarrow{\text{Integer numeral}} \text{_____}$.

And

$$\left[\begin{smallmatrix} 4 \\ 9 \end{smallmatrix} \right] = \left[\begin{smallmatrix} N \\ T \end{smallmatrix} \right], \text{ where } N = \text{_____} \neq 4, \text{ and } T = \text{_____}.$$

d On $\Omega := [1..29] \times [1..29]$, define binary-relation **C** by: $(x, \alpha) \mathbf{C} (y, \beta) \text{ IFF } x \cdot \beta \equiv_{30} y \cdot \alpha$. Statement “Relation **C** is an equivalence relation” is: $T \ F$

Your 2 essay(s) must be TYPESET, and Double or Triple spaced. Use the Print/Revise cycle to produce good, well thought out, essays. Start each essay on a **new** sheet of paper. Do not restate the problem; just solve it.

V2: On a 9×9 chessboard, 37 rooks are placed. Prove there exists a **friendly** 5-set of rooks. [I.e, on 5 distinct rows and on 5 distinct columns.] [Hint: PHP] Illustrate the concepts in your proof with large, useful Pictures.

V3: For all natnums $k < n$, prove that $H_k \perp H_n$, where

$$H_k := 1 + 6^{[2^k]}.$$

[Hint: For each natnum m , define $G_m := -1 + 6^{[2^m]}$. Prove a divisibility relation among the H s and the G s, by induction. Then a common divisor of H_k and H_n must...]

Also, produce an index $\ell \in \mathbb{N}$ st. H_ℓ is not prime.

End of Home-V

V1: _____ 95pts
V2: _____ 95pts
V3: _____ 105pts

Total: _____ 295pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).* _____ *Name/Signature/Ord*

Ord: _____

Ord: _____

Ord: _____